The Greenhouse Effect
Greenhouse Effect
Atmospheric scientists first used the term 'greenhouse effect' in the early 1800s. At that time, it was used to describe the naturally occurring functions of trace gases in the atmosphere and did not have any negative connotations. It was not until the mid-1950s that the term greenhouse effect was coupled with concern over climate change. And inrecent decades, we often hear about the greenhouse effect in somewhat negative terms. The negative concerns are related to the possible impacts of an enhanced greenhouse effect. This is covered in more detail in the Global Climate Change section of this Web site. It is important to remember that without the greenhouse effect, life on earth as we know it would not be possible.
While the earth'stemperature is dependent upon the greenhouse-like action of the atmosphere, the amount of heating and cooling are strongly influenced by several factors just as greenhouses are affected by various factors.
In the atmospheric greenhouse effect, the type of surface that sunlight first encounters is the most important factor. Forests, grasslands, ocean surfaces, ice caps, deserts, and cities allabsorb, reflect, and radiate radiation differently. Sunlight falling on a white glacier surface strongly reflects back into space, resulting in minimal heating of the surface and lower atmosphere. Sunlight falling on a dark desert soil is strongly absorbed, on the other hand, and contributes to significant heating of the surface and lower atmosphere. Cloud cover also affects greenhouse warming by bothreducing the amount of solar radiation reaching the earth's surface and by reducing the amount of radiation energy emitted into space.
Scientists use the term albedo to define the percentage of solar energy reflected back by a surface. Understanding local, regional, and global albedo effects is critical to predicting global climate change.
The greenhouse effect is a naturally occurring processthat aids in heating the Earth's surface and atmosphere. It results from the fact that certain atmospheric gases, such as carbon dioxide, water vapor, and methane, are able to change the energy balance of the planet by absorbing longwave radiation emitted from the Earth's surface. Without the greenhouse effect life on this planet would probably not exist as the average temperature of the Earthwould be a chilly -18° Celsius, rather than the present 15° Celsius.
As energy from the Sun passes through the atmosphere a number of things take place (see Figure 7h-1). A portion of the energy (26% globally) is reflected or scattered back to space by clouds and other atmospheric particles. About 19% of the energy available is absorbed by clouds, gases (like ozone), and particles in the atmosphere.Of the remaining 55% of the solar energy passing through the Earth's atmosphere, 4% is reflected from the surface back to space. On average, about 51% of the Sun's radiation reaches the surface. This energy is then used in a number of processes, including the heating of the ground surface; the melting of ice and snow and the evaporation of water; and plant photosynthesis. The heating of the...
Regístrate para leer el documento completo.