Tippens Fisica 7e Diapositivas 31a
Inducción
electromagnética
Presentación PowerPoint de
Paul E. Tippens, Profesor de Física
Southern Polytechnic State
University
© 2007
Objetivos: Después de
completar este módulo
deberá:
• Calcular la magnitud y dirección de la
corriente inducida o fem en un
conductor que se mueve con respecto a
campo
dado.
• un
Calcular
elBflujo
magnético a través de
una área en un campo B dado.• Aplicar la ley de Lenz y la regla de la
mano derecha para determinar
direcciones de fem inducida.
• Describir la operación y uso de los
generadores o motores ca y cd.
Corriente inducida
Cuandoun
unconductor
conductorse
semueve
mueve
Cuando
travésde
delíneas
líneasde
deflujo,
flujo,las
las
aatravés
fuerzasmagnéticas
magnéticassobre
sobrelos
los
fuerzas
electronesinducen
inducenuna
unaelectrones
corrienteeléctrica.
eléctrica.
corriente
Laregla
reglade
dela
lamano
manoderecha
derecha
La
muestracorriente
corrientehacia
haciaafuera
afuera
muestra
paramovimiento
movimientoabajo
abajoyyhacia
hacia
para
adentropara
paramovimiento
movimiento
adentro
arriba.(Verificar.)
(Verificar.)
arriba.
Abaj
o
B
Abaj
o
F
v
I
Arrib
a
Arrib
a
B
I
v
F
B
FEM inducida:
Observaciones
Observaciones deFaraday:
B
Líneas de flujo en Wb
• El movimiento relativo
induce fem.
• La dirección de fem depende
de la dirección del
movimiento.
• La fem es proporcional a la
tasa a que se cortan las
líneas (v).
• La fem es proporcional al
número de vueltas N.
N vueltas;
velocidad v
Ley de
Faraday:
E =-N
t
El signo negativo significa que E se opone a su
causa.
Densidad de flujo
magnético
• Laslíneas de flujo
magnético son
continuas y
cerradas.
• La dirección es la
del vector B en
cualquier punto.
Cuando
Cuando el
el área
área AA es
es
perpendicular
perpendicular al
al
flujo:
flujo:
B
A
A
Densidad de
flujo magnético:
; = BA
BB
; = BA
AA
La unidad de densidad de flujo es el
weber por metro cuadrado.
Cálculo de flujo cuando el
área no es perpendicular alcampo
El flujo que penetra al
área A cuando el
vector normal n forma
un ángulo con el
campo B es:
BA
BAcos
cos
n
A
B
El ángulo es el complemento del ángulo que
el plano del área forma con el campo B. (cos
= sen )
Ejemplo 1: Una espira de corriente tiene
una área de 40 cm2 y se coloca en un
campo B de 3 T a los ángulos dados.
Encuentre el flujo a través de la espira
xen
x xcada caso.
n
n
xx x
A
x xx
x x x
x x x
Ax = 40
cm2
n
(a) =
00
(b) =
900
(c) =
600
(a) = BA cos 00 = (3 T)(0.004 m2)(1);
12.0
mWb
(b) = BA cos 900 = (3 T)(0.004 m2)(0);
0
mWb
(c) = BA cos 600 = (3 T)(0.004 m2)(0.5); 6.00
mWb
Aplicación de la ley de
Faraday
Al cambiar el área o el
campo B puede ocurrir
un cambio en el flujo :
Ley de
Faraday:
E =-Nt
= B
A
Espira giratoria = B
A n
n
n
= A
B
Espira en reposo = A
B
Ejemplo 2: Una bobina tiene 200 vueltas de 30
cm2 de área. Se voltea de la posición vertical a la
horizontal en un tiempo de 0.03 s. ¿Cuál es la
fem inducida si el campo constante B es 4 mT?
N = 200 vueltas
A = 30 cm2 – 0 = 30
n
cm2
= B A = (3 mT)(30
N
S
cm2)
B
= (0.004 T)(0.0030
m2 )
B = 4 mT; 00 a
= 1.2 x10-5
0
90
Wb
1.2 x 10-5 Wb
E N
(200)
EE =
-0.080
=
-0.080
t
0.03 s
VV
El signo negativo indica la polaridad del voltaje.
Ley de Lenz
Ley
Ley de
de Lenz:
Lenz: Una
Una corriente
corriente inducida
inducida estará
estará en
en una
una
dirección
dirección tal
tal que
que producirá
producirá un
un campo
campo magnético
magnético
que
que se
se opondrá
opondrá al
al movimiento
movimientodel
del campo
campo
magnético
magnético que
que lo
lo produce.
produce.
B
inducido
I
Movimiento
a la
izquierda
N
El flujo que aumenta a la
izquierda induce flujo a la
derecha en la espira.
S
B
inducido
I
I
Movimiento a la
derecha
N
S
El flujo que disminuye por
movimiento a la derecha induce
flujo a la izquierda en la espira.
Ejemplo 3: Use la ley de Lenz para determinar
la dirección...
Regístrate para leer el documento completo.