titulo

Páginas: 8 (1782 palabras) Publicado: 27 de octubre de 2014
Aun no tengo ningun documento en cola, proximamente si. Saludos. Mas que nada me cree una cuenta para poder obtener ayuda en los deberes que me envien desde el colegioLas raíces cuadradas son expresiones matemáticas que surgieron al plantear diversos problemas geométricos como la longitud de la diagonal de un cuadrado. El Papiro de Ahmes datado hacia 1650 a. C., que copia textos más antiguos,muestra cómo los egipcios extraían raíces cuadradas.[1] En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue al menos tan antiguo como los Sulba Sutras, fechados alrededor del 800-500 a. C. (posiblemente mucho antes). Un método para encontrar muy buenas aproximaciones a las raíces cuadradas de 2 y 3 es dado en el Baudhayana SulbaSutra.[2] Aryabhata en su tratado Aryabhatiya (sección 2.4), dio un método para encontrar la raíz cuadrada de números con varios dígitos.Los babilonios aproximaban raíces cuadradas haciendo cálculos mediante la media aritmética reiteradamente. En términos modernos, se trata de construir una sucesión  dada por: [3]Puede demostrarse que esta sucesión matemática converge  (como valor inical  puede tomarse con buenaaproximación el entero más cercano al valor de la raíz cuadrada). Las raíces cuadradas fueron uno de los primeros desarrollos de las matemáticas, siendo particularmente investigadas durante el periodo pitagórico, cuando el descubrimiento de que la raíz cuadrada de 2 era irracional (inconmensurable) o no expresable como cociente alguno, lo que supuso un hito en la matemática de la épocaLas raícescuadradas son expresiones matemáticas que surgieron al plantear diversos problemas geométricos como la longitud de la diagonal de un cuadrado. El Papiro de Ahmes datado hacia 1650 a. C., que copia textos más antiguos, muestra cómo los egipcios extraían raíces cuadradas.[1] En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue al menos tan antiguocomo los Sulba Sutras, fechados alrededor del 800-500 a. C. (posiblemente mucho antes). Un método para encontrar muy buenas aproximaciones a las raíces cuadradas de 2 y 3 es dado en el Baudhayana Sulba Sutra.[2] Aryabhata en su tratado Aryabhatiya (sección 2.4), dio un método para encontrar la raíz cuadrada de números con varios dígitos.Los babilonios aproximaban raíces cuadradas haciendo cálculosmediante la media aritmética reiteradamente. En términos modernos, se trata de construir una sucesión  dada por: [3]Puede demostrarse que esta sucesión matemática converge  (como valor inical  puede tomarse con buena aproximación el entero más cercano al valor de la raíz cuadrada). Las raíces cuadradas fueron uno de los primeros desarrollos de las matemáticas, siendo particularmente investigadasdurante el periodo pitagórico, cuando el descubrimiento de que la raíz cuadrada de 2 era irracional (inconmensurable) o no expresable como cociente alguno, lo que supuso un hito en la matemática de la épocaLas raíces cuadradas son expresiones matemáticas que surgieron al plantear diversos problemas geométricos como la longitud de la diagonal de un cuadrado. El Papiro de Ahmes datado hacia 1650 a. C.,que copia textos más antiguos, muestra cómo los egipcios extraían raíces cuadradas.[1] En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue al menos tan antiguo como los Sulba Sutras, fechados alrededor del 800-500 a. C. (posiblemente mucho antes). Un método para encontrar muy buenas aproximaciones a las raíces cuadradas de 2 y 3 es dado enel Baudhayana Sulba Sutra.[2] Aryabhata en su tratado Aryabhatiya (sección 2.4), dio un método para encontrar la raíz cuadrada de números con varios dígitos.Los babilonios aproximaban raíces cuadradas haciendo cálculos mediante la media aritmética reiteradamente. En términos modernos, se trata de construir una sucesión  dada por: [3]Puede demostrarse que esta sucesión matemática converge  (como...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • titulo del titulo
  • Titulo
  • Titulos
  • El titulo
  • Titulo
  • Soy un titulo
  • Sin titulo
  • Titulos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS