todo

Páginas: 12 (2962 palabras) Publicado: 28 de mayo de 2013
La Programación Lineal (PL) es una de las principales ramas de la Investigación Operativa. En esta categoría se consideran todos aquellos modelos de optimización donde las funciones que lo componen, es decir, función objetivo y restricciones, son funciones lineales en las variables de decisión
Los modelos de Programación Lineal por su sencillez son frecuentemente usados para abordar una granvariedad de problemas de naturaleza real en ingeniería y ciencias sociales, lo que ha permitido a empresas y organizaciones importantes beneficios y ahorros asociados a su utilización.
Un modelo de Programación Lineal (PL) considera que las variables de decisión tienen un comportamiento lineal, tanto en la función objetivo como restricciones del problema. En este sentido, la Programación Lineal esuna de las herramientas más utilizadas en la Investigación Operativa debido a que por su naturaleza se facilitan los cálculos y en general permite una buena aproximación de la realidad.
Los Modelos Matemáticos se dividen básicamente en Modelos Determistas (MD) oModelos Estocásticos (ME). En el primer caso (MD) se considera que los parámetros asociados al modelo son conocidos con certeza absoluta,a diferencia de los Modelos Estocásticos, donde la totalidad o un subconjunto de los parámetros tienen una distribución de probabilidad asociada. Los cursos introductorios a la Investigación Operativa generalmente se enfocan sólo en Modelos Determistas.

Supuestos Básicos de la Programación Lineal: Linealidad, Modelos Deterministas, Variables reales, No Negatividad.
APLICACIONES
1. Problemade la Dieta: (Stigler, 1945). Consiste en determinar una dieta de manera eficiente, a partir de un conjunto dado de alimentos, de modo de satisfacer requerimientos nutricionales. La cantidad de alimentos a considerar, sus características nutricionales y los costos de éstos, permiten obtener diferentes variantes de este tipo de modelos. Por ejemplo:
 
Leche
(lt)
Legumbre
(1 porción)
Naranjas(unidad)
Requerimientos
Nutricionales
Niacina
3,2
4,9
0,8
13
Tiamina
1,12
1,3
0,19
15
Vitamina C
32
0
93
45
Costo
2
0,2
0,25
 

Variables de Decisión:
X1: Litros de Leche utilizados en la Dieta
X2: Porciones de Legumbres utilizadas en la Dieta
X3: Unidades de Naranjas utilizadas en la Dieta
Función Objetivo: (Minimizar los Costos de la Dieta) Min 2X1 + 0,2X2 +0,25X3
Restricciones: Satisfacer los requerimientos nutricionales
Niacina: 3,2X1 + 4,9X2 + 0,8X3 >= 13
Tiamina: 1,12X1 + 1,3X2 + 0,19X3 >=15
Vitamina C: 32X1 + 0X2 + 93X3 >= 45
No Negatividad: X1>=0; X2>=0; X3>=0
Compruebe utilizando nuestro Módulo de Resolución que la solución Óptima es X1=0, X2=11,4677, X3=0,483871, con Valor Óptimo V(P)=2,4145.

El análisis gráfico es una alternativaeficiente para enfrentar la resolución de modelos de Programación Lineal en 2 variables, donde el dominio de puntos factibles (en caso de existir) se encontrará en el primer cuadrante, como producto de la intersección de las distintas restricciones del problema lineal.
Una de las propiedades básicas de un modelo de Programación Lineal que admite solución, es que ésta se encontrará en el vértice ofrontera (tramo) del dominio de puntos factibles. Es decir, si luego de gráficar el dominio y evaluar los distintos vértices de modo de elegir "el mejor" candidato según sea nuestro caso (el valor de la función objetivo será la que nos permitirá discriminar cual es el mejor candidato dependiendo si estamos maximizando o minimizando).
Consideremos un Ejemplo Introductorio en 2 variables:
D) MIN 8X + 6YS.A. 2X + Y >= 10
...... .2X + 2Y >= 16
..... ..X>= 0, Y>= 0
Comentario: Nótese que corresponde al Problema Dual de P) cuya resolución se presenta en nuestro sitio como ejemplo introductorio en la utilización de Solver de MS Excel. Para ver el detalle de la resolución gráfica de P) se recomienda al usuario ingresar AQUI.
Para resolver el problema D) graficamos el dominio de puntos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Todo de todo
  • Todo es uno uno es todo
  • Todo A Todo
  • todos y todas
  • de todo todo
  • Todo Todo
  • Todo Todo.
  • todos y todos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS