Todo

Páginas: 11 (2623 palabras) Publicado: 14 de septiembre de 2010
Sistema lineal de ecuaciones
En matemática y álgebra lineal, un sistema lineal de ecuaciones es un conjunto de ecuaciones lineales sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:
[pic]
El problema consiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres ecuaciones.
El problema de los sistemaslineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señales, estimación, predicción y más generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico.
En general, un sistema con m ecuaciones lineales n incógnitas puede ser escrito en forma ordinaria como:
[pic]Donde [pic]son las incógnitas y los números [pic]son los coeficientes del sistema sobre el cuerpo [pic]. Es posible reescribir el sistema separando con coeficientes con notación matricial:
(1) [pic]
Si representamos cada matriz con una única letra obtenemos:
[pic]
Donde A es una matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema deeliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan los coeficientes.

Sistemas lineales reales

En esta sección se analizan las propiedades de los sistemas de ecuaciones lineales sobre el cuerpo [pic], es decir, los sistemas lineales en los coeficientes de las ecuaciones son números reales.

Representación gráfica

[pic]

La intersección dedos planos no paralelos es una recta
Un sistema con [pic]incógnitas se puede representar en el n-espacio correspondiente.
En los sistemas con 2 incógnitas, el universo de nuestro sistema será el plano bidimensional, mientras que cada una de las ecuaciones será representada por una recta, si es lineal, o por una curva, si no lo es. La solución será el punto (o línea) donde intersecten todas lasrectas y curvas que representan a las ecuaciones. Si no existe ningún punto en el que intersecten al mismo tiempo todas las líneas, el sistema es incompatible, o lo que es lo mismo, no tiene solución.
En el caso de un sistema con 3 incógnitas, el universo será el espacio tridimensional, siendo cada ecuación un plano dentro del mismo. Si todos los planos intersectan en un único punto, lascoordenadas de éste serán la solución al sistema. Si, por el contrario, la intersección de todos ellos es una recta o incluso un plano, el sistema tendrá infinitas soluciones, que serán las coordenadas de los puntos que forman dicha línea o superficie.
Para sistemas de 4 ó más incógnitas, la representación gráfica no es intuitiva para el ser humano, por lo que dichos problemas no suelen enfocarse desdeesta óptica.

Tipos de sistemas

Los sistemas de ecuaciones se pueden clasificar según el número de soluciones que pueden presentar. De acuerdo con ese caso se pueden presentar los siguientes casos:
• Sistema incompatible si no tiene ninguna solución.
• Sistema compatible si tiene alguna solución, en este caso además puede distinguirse entre:
o Sistema compatible determinadocuando tiene un número finito de soluciones.
o Sistema compatible indeterminado cuando admite un conjunto infinito de soluciones.
Quedando así la clasificación:
[pic]
Los sistemas incompatibles geométricamente se caracterizan por (hiper)planos o rectas que se cruzan sin cortarse. Los sistemas compatibles determinados se caracterizan por un conjunto de (hiper)planos o rectas que secortan en un único punto. Los sistemas compatibles indeterminados se caracterizan por (hiper)planos que se cortan a lo largo de una recta [o más generalmente un hiperplano de dimensión menor]. Desde un punto de vista algebraico los sistemas compatibles determinados se caracterizan porque el determinante de la matriz es diferente de cero:
[pic]

Sistemas compatibles indeterminados

Un sistema...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Todo de todo
  • Todo es uno uno es todo
  • Todo A Todo
  • todos y todas
  • de todo todo
  • Todo Todo
  • Todo Todo.
  • todos y todos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS