Topicos

Páginas: 4 (919 palabras) Publicado: 24 de enero de 2014
2. Teoría de conjuntos
Tópicos selectos de matemáticas
discretas
IME

Conjuntos y subconjuntos
• Conjunto: puede ser considerado como una
colección de objetos, elementos, miembros oindividuos.
• En este sentido se dice que un conjunto contiene a
sus elementos, o que sus elementos pertenecen al
conjunto.
• Generalmente se utilizan mayúsculas A, B, X,
Y,… para denotar conjuntos, yminúsculas
a,b,x,y,… para denotar elementos de conjuntos.

Conjuntos y subconjuntos
• Dos conjuntos A y B son iguales si tienen los
mismos elementos. Denotamos la igualdad de dos
conjuntos A y Bpor A = B.
• Si un elemento a pertenece a un conjunto A lo
denotamos por a  A. Si no pertenece lo
denotamos por a  A.

Conjuntos y subconjuntos
A es un subconjunto de B si todo elemento de Aes también
elemento de B, lo representamos por A  B o sea que:

A  B  x  A  x B
Note que si A  B y B  A , entonces A = B.

Conjuntos y subconjuntos
• Definición de conjuntos:
• Porextensión: nombrando todos y cada uno de los elementos,
separándolos por comas y encerrándolos entre dos llaves. Por ejemplo,
el conjunto de las vocales será:
– A={a,e,i,o,u}

• Por comprensión:enunciando la (s) propiedad (es) que caracteriza (n)
al conjunto; es decir, que cumplen todos los elementos del conjunto y
solamente ellos.
– A={vocales}

Conjuntos y subconjuntos
• Ejemplos deconjuntos
• Definición por extensión o enumeración:

A = {1, 2, 3}
B = {a, b, c}
C = {1, 2, 3, …}
D = {-2, -4, -6, …}

Se cumple
AC
CA

Definición por descripción o una proposiciónabierta

E = {x  N | x < 4}
F = {x  {a, b, c, …, z} | x es vocal}
G = {x | x es par y x es primo}

Conjunto vacío y potencia
Un conjunto importante es el conjunto vacío o nulo, el cual nocontiene ningún elemento, éste es subconjunto de todo conjunto.
Se denota: .

Teorema: Si A  B y B  C , entonces A  C.
El conjunto de todos los subconjuntos de A se le llama el
conjunto potencia...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • topicos
  • Topico
  • topicos
  • Topicos
  • Topicos
  • topico
  • los topicos
  • Topicos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS