Trabajo de fisica
Heisenberg había presentado su propio modelo de átomo renunciando a todo intento de describir el átomo como un compuesto de partículas y ondas. Pensó que estaba condenado al fracaso cualquier intento de establecer analogías entre la estructura atómica y la estructura del mundo. Prefirió describir los niveles de energía u órbitas de electronesen términos numéricos puros, sin la menor traza de esquemas. Como quiera que usó un artificio matemático denominado "matriz" para manipular sus números, el sistema se denominó "mecánica de matriz".
Heisenberg recibió el premio Nobel de Física en 1932 por sus aportaciones a la mecánica ondulatoria de Schrödinger, pues esta última pareció tan útil como las abstracciones de Heisenberg, y siemprees difícil, incluso para un físico, desistir de representar gráficamente las propias ideas.
Una vez presentada la mecánica matriz (para dar otro salto atrás en el tiempo) Heisenberg pasó a considerar un segundo problema: cómo describir la posición de la partícula. ¿Cuál es el procedimiento indicado para determinar dónde está una partícula? La respuesta obvia es ésta: observarla. Pues bien,imaginemos un microscopio que pueda hacer visible un electrón. Si lo queremos ver debemos proyectar una luz o alguna especie de radiación apropiada sobre él. Pero un electrón es tan pequeño, que bastaría un solo fotón de luz para hacerle cambiar de posición apenas lo tocara. Y en el preciso instante de medir su posición, alteraríamos ésta.
Aquí nuestro artificio medidor es por lo menos tangrande como el objeto que medimos; y no existe ningún agente medidor más pequeño que el electrón. En consecuencia, nuestra medición debe surtir, sin duda, un efecto nada desdeñable, un efecto más bien decisivo en el objeto medido. Podríamos detener el electrón y determinar así su posición en un momento dado. Pero si lo hiciéramos, no sabríamos cuál es su movimiento ni su velocidad. Por otra parte,podríamos gobernar su velocidad, pero entonces no podríamos fijar su posición en un momento dado.
Heisenberg demostró que no nos será posible idear un método para localizar la posición de la partícula subatómica mientras no estemos dispuestos a aceptar la incertidumbre absoluta respecto a su posición exacta. Es un imposible calcular ambos datos con exactitud al mismo tiempo.
Siendo así, nopodrá haber una ausencia completa de energía ni en el cero absoluto siquiera. Si la energía alcanzara el punto cero y las partículas quedaran totalmente inmóviles, sólo sería necesario determinar su posición, puesto que la velocidad equivaldría a cero. Por tanto, sería de esperar que subsistiera alguna "energía residual del punto cero", incluso en el cero absoluto, para mantener las partículas enmovimiento y también, por así decirlo, nuestra incertidumbre. Esa energía "punto cero" es lo que no se puede eliminar, lo que basta para mantener liquido el helio incluso en el cero absoluto.
En 1930, Einstein demostró que el principio de incertidumbre (donde se afirma la imposibilidad de reducir el error en la posición sin incrementar el error en el momento) implicaba también laimposibilidad de reducir el error en la medición de energía sin acrecentar la incertidumbre del tiempo durante el cual se toma la medida. Él creyó poder utilizar esta tesis como trampolín para refutar el principio de incertidumbre, pero Bohr procedió a demostrar que la refutación tentativa de Einstein era errónea.
A decir verdad, la versión de la incertidumbre, según Einstein, resultó ser muy útil,pues significó que en un proceso subatómico se podía violar durante breves lapsos la ley sobre conservación de energía siempre y cuando se hiciese volver todo al estado de conservación cuando concluyesen esos períodos: cuanto mayor sea la desviación de la conservación, tanto más breves serán los intervalos de tiempo tolerables. Yukawa aprovechó esta noción para elaborar su teoría de los piones....
Regístrate para leer el documento completo.