TRABAJO
Permutaciones con repetición de n elementos donde el primer elemento se repitea veces , el segundo b veces , el tercero c veces, ...
n = a + b + c + ...
Sonlos distintos grupos que pueden formarse con esos n elementos de forma que :
Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.
Ejemplos:
Calcularlas permutaciones con repetición de: .
2. Con las cifras 2, 2, 2, 3, 3, 3, 3, 4, 4; ¿cuántos números de nueve cifras se pueden formar?
m = 9 a = 3 b = 4 c = 2 a + b + c = 9Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.
3. En el palo de señales de un barco se pueden izar tres banderas rojas, dos azules y cuatro verdes. ¿Cuántasseñales distintas pueden indicarse con la colocación de las nueve banderas?
Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.
1) Obtenga todas las señalesposibles que se pueden diseñar con seis banderines, dos de los cuales son rojos, tres son verdes y uno morado.
Solución:
n = 6 banderines
x1 = 2 banderines rojos
x2 = 3 banderinesverdes
x3 = 1 banderín morado
6P2,3,1 = 6! / 2!3!1! = 60 señales diferentes
2) a.¿Cuántas claves de acceso a una computadora será posible diseñar con losnúmeros 1,1,1,2,3,3,3,3?, b.¿cuántas de las claves anteriores empiezan por un número uno seguido de un dos?, c. ¿cuántas de las claves del inciso a empiezan por el número dos y terminan por elnúmero tres?
Solución:
a. n = 8 números
x1 = 3 números uno
x2 = 1 número dos
x3 = 4 números cuatro
8P3,1,4 = 8! / 3!1!4! = 280 claves deacceso
b. n = 6 (se excluye un número uno y un dos)
x1 = 2 números uno
x2 = 4 números tres
1 x 1 x 6P2,4 = 1 x 1 x 6! / 2!4! = 15 claves de acceso...
Regístrate para leer el documento completo.