trabajos

Páginas: 9 (2012 palabras) Publicado: 28 de enero de 2015
2.1 ECUACIÓN PARAMÉTRICA DE LA LÍNEA RECTA.
La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una recta, lo que incluye tanto la forma para métrica como la vectorial. Un espacio tridimensional puede ser utilizado para determinar una ecuación vectorial que denote una línea recta. El parámetro es sencillamente una variable cuyoobjetivo principal es describir una relación particular con la ayuda de los parámetros. 
Por tanto, una ecuación para métrica es una ecuación que está basada en una variable en particular. Una ecuación para métrica  en términos generales, se conoce también como representación para métrica  Ejemplo: Considere la ecuación x = 2 + 3t. En esta ecuación, t denota el parámetro y la ecuación se conoce como ecuación paramétrica en términos de t.
Si así consta, por lo general, las ecuaciones de la forma x = x0 + ta; y = y0 + tb; z = z0 + tc representan las ecuaciones para métricas de línea recta. Para conseguir un punto particular en la recta, todo lo que tenemos que hacer es tomar el valor de t de cualquiera de las ecuaciones e insertarlo en otra ecuación. Como resultado, obtenemos las coordenadas reales de unpunto determinado en la recta.
Consideremos un ejemplo con el fin de encontrar una ecuación para métrica para una recta entre los puntos (−1, 3) y (1, 1).
Paso 1: De los puntos dados en el enunciado, elija uno como punto inicial. Consideremos a (−1, 3) como punto inicial.
Paso 2: Ahora, tomemos las coordenadas x para los rangos indicados. Es posible observar que −1 está a 2 unidades dedistancia del 1. Por tanto, x = −1 + 2t
Paso 3: Del mismo modo, teniendo en cuenta las coordenadas y para los rangos indicados, es posible ver que el 3 está a −2 unidades de distancia del 1. Por tanto, y = 3 - 2t.
Por consiguiente, las ecuaciones para métricas para la recta entre los puntos (−1, 3) y (1, 1) son x = −1 + 2t e y = 3 - 2t. Otra forma de ecuación para métrica en el campo del cálculovectorial se denomina ecuación vectorial. El cálculo de la ecuación vectorial se basa en el concepto del cálculo de la ecuación para métrica.
Por ejemplo: Suponga que queremos encontrar una ecuación vectorial para una línea entre los puntos (−1, 3) y (1, 1).
Se procede de la siguiente manera:
Paso 1: De los puntos dados en el enunciado, elija uno como punto inicial. Consideremos a (−1, 3) como puntoinicial.
Paso 2: Un vector de dirección es calculado. Es el vector que muestra movimiento desde el punto inicial hasta el punto final. 
Ahora, con el fin de alcanzar al punto (1, 1), debemos mover a x e y a 2 y −2 unidades, respectivamente. Por tanto, el vector de dirección viene a ser (2, −2).
Paso 3: Por consiguiente, la ecuación vectorial toma la forma de: (−1, 3) + (2, −2) t.
La principaldiferencia entre la ecuación para métrica y la vectorial de la recta es el hecho de que con la ayuda de la ecuación vectorial de la recta, la forma del vector es conocida, mientras que la forma para métrica ayuda a conocer las coordenadas reales del punto.


2.2 CURVAS PLANAS:

Una curva geométrica mente hablando diremos que intuitivamente, es el conjunto de puntos que representan las distintasposiciones ocupadas por un punto que se mueve; si se usa el término curva por oposición a recta o línea poligonal, habría que excluir de esta noción los casos de, aquellas líneas que cambian continuamente de dirección, pero de forma suave, es decir, sin formar ángulos. Esto las distingue de las líneas rectas y de las quebradas. Estarían fuera de esta noción los casos de movimiento rectilíneo. Sinembargo, utilizando la definición matemática, una línea recta es un caso.
particular de curva.Curva: Es el caso límite de poligonal en que los saltos discretos de los segmentos son infinitesimales. También en este caso se dice curva plana, también llamada de simple curvatura por el ángulo de contingencia, si tienetodos sus puntos en un mismo plano; y curva alabeada, llamada de doble curvatura...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Trabajadores Del Trabajo
  • trabajo del trabajo
  • Trabajo Del Trabajo
  • El trabajo y el Trabajador
  • Trabajo Trabajador
  • trabajo trabajo
  • trabajo trabajo
  • Trabajo de trabajo

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS