vectores
La elipse es una línea curva, cerrada y plana cuya definición más usual es:
La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante.
Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el dela generatriz respecto del eje de revolución.1 Una elipse que gira alrededor de su eje menor genera unesferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.
Historia
Forma elíptica trazada en la antigüedad sobre un muro de Tebas (Egipto).
La elipse, como curva geométrica, fue estudiada por Menecmo, investigada por Euclides, y sunombre se atribuye a Apolonio de Pérgamo. El foco y la directriz de la sección cónica de una elipse fueron estudiadas por Pappus. En 1602, Kepler creía que la órbita de Marte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahoralleva su nombre trazaba una órbita elíptica alrededor del Sol.
Elementos de una elipse
La elipse y algunas de sus propiedades geométricas.
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:
El semieje mayor (el segmento C-a de la figura), y
el semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor y menor respectivamente.Puntos de una elipse
Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor (d(P,F1)+d(P,F2)=2a).
Por comodidad denotaremos por PQ la distancia entre dos puntos P y Q.
Si F1 y F2 son dos puntos de un plano, y 2a es unaconstante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:
donde es la medida del semieje mayor de la elipse.
Ejes de una elipse
El eje mayor, 2a, es la mayor distancia entre dos puntos opuestos de la elipse. El resultado de la suma de las distancias de cualquier punto a los focos es constante y equivale al eje mayor. El eje menor 2b, es la menordistancia entre dos puntos opuestos de la elipse. Los ejes de la elipse son perpendiculares entre sí.
Constante de la elipse
En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) yPF2 (color rojo), y en laanimación se ilustra como varían para diversos puntos P de la elipse.
Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor:
PF1 + PF2 = 2a
En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto de puntos,cómo se cumple la definición.
Directrices de la elipse
La recta dD es una de las 2 directrices de la elipse.
Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto Pde la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz queresulta en la igualdad:
La relación entre estas dos distancias es la excentricidad de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.
Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente entre sus distancias a un punto fijo –que se...
Regístrate para leer el documento completo.