volumetria
Para otros usos de este término, véase Vector (desambiguación).
Este artículo trata sobre el concepto físico de vector. Para el tratamiento matemático formal, véase Espacio vectorial.
Representación gráfica de un vector como unsegmento orientado sobre una recta.
En Física, un vector (también llamado vector euclidiano o vector geométrico) es una herramienta geométrica utilizadapara representar una magnitud física definida por sumódulo (o longitud), su dirección (u orientación) y su sentido (que distingue el origen del extremo).1 2 3 Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano o en el espacio .
En Matemáticas se define un vector como un elemento de un espacio vectorial, esta noción esmás abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación (ver espacio vectorial). En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo.
Algunos ejemplos de magnitudes físicas que son magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no quedadefinida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.
Características de un vector
Coordenadas cartesianas.Un vector se puede definir por sus coordenadas, si el vector esta en el plano xy, se representa:
siendo sus coordenadas:
Siendo el vector la suma vectorial de sus coordenadas:
Coordenadas tridimensionales.
Si un vector es de tres dimensiones reales, representado sobre los ejes x, y, z, se puede representar:
siendo sus coordenadas:
Si representamos el vector gráficamente podemosdiferenciar la recta soporte o dirección, sobre la que se traza el vector.
El módulo o amplitud con una longitud proporcional al valor del vector.
El sentido, indicado por la punta de flecha, siendo uno de los dos posibles sobre la recta soporte.
El punto de aplicación que corresponde al lugar geométrico al cual corresponde la característica vectorial representado por el vector.El nombre o denominación es la letra, signo o secuencia de signos que define al vector.
Por lo tanto en un vector podemos diferenciar:
Nombre
Dirección
Sentido
Modulo
Punto de aplicación
Magnitudes vectoriales
Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, laenergía, la temperatura, etc; que quedan completamente definidas por un número y lasunidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, lavelocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.
Las magnitudes vectoriales quedan representadas porun ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas alos ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.5 6
Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector, la recta indica la dirección, y la "punta de flecha" indica su sentido
Clasificación de vectores
Según...
Regístrate para leer el documento completo.