ECUACIONES CUADRATICAS: GRAFICAS La función cuadrática más sencilla es f(x) = x2 cuya gráfica es: x | -3 | -2 | -1 | -0'5 | 0 | 0'5 | 1 | 2 | 3 | f(x) = x2 | 9 | 4 | 1 | 0'25 | 0 | 0'25 | 1 | 4 | 9 | Esta curva simétrica se llama parábola. Funciones cuadráticas más complejas se dibujan de la misma forma. Dibujemos la gráfica de f(x) = x2 -2 x - 3. x | -1 | 0 | 1 | 2 | 3 | 4 | f(x) | 0 | -3 | -4 | -3 | 0 | 5 | Completando la gráfica obtengo: Actividades resueltas 1. Dada...
748 Palabras | 3 Páginas
Leer documento completoLa ecuación cuadrática. Sabemos que una ecuación es una relación matemática entre números y letras. Normalmente se trabaja con ecuaciones en las que sólo hay una letra, llamada incógnita, que suele ser la x. Resolver la ecuación consiste en encontrar un valor (o varios) que, al sustituirlo por la incógnita, haga que sea cierta la igualdad. Ese valor es la solución de la ecuación. Si en la ecuación la incógnita está elevada al cuadrado, decimos que es una ecuación cuadrática (llamadas también...
1505 Palabras | 7 Páginas
Leer documento completoFórmula cuadrática[editar · editar código] Para una ecuación cuadrática con coeficientes reales o complejos existen siempre dos soluciones, no necesariamente distintas, llamadas raíces, que pueden ser reales o complejas (si los coeficientes son reales y existen dos soluciones no reales, entonces deben ser complejas conjugadas). Se denomina fórmula cuadrática3 a la ecuación que proporciona las raíces de la ecuación cuadrática: x = \frac{-b \pm \sqrt {b^2-4ac}}{2a} donde el símbolo ± indica que...
1114 Palabras | 5 Páginas
Leer documento completoECUACIÓN DE SEGUNDO GRADO. 1) Identificar los coeficientes a, b, y c. a) y2 + 7y – 3 = 0 b) 6x2 = 0 c) 2) Reduce y ordena cada una de las siguientes ecuaciones: a) 6x2 +4 = 16 + 4x2 b) ( y – 1)2 – ( y – 2)2 = y2 c) d) 3) Resuelve las siguientes ecuaciones cuadráticas incompletas: a) 8x2 – 7x = 0 b) 16y2 – 361 = 0 c) y2 + y = 0 d) (y-2)(y-3) = 9y + 6 e) 4 (x - 2)2 = (x – 8)2 f) (x – 13)2=(x – 12)2 + ( x – 5)2 4) Resuelve las siguientes ecuaciones...
590 Palabras | 3 Páginas
Leer documento completoo a cualquier centro comercial, siempre se relaciona un conjunto de determinados objetos o productos alimenticios, con el costo en pesos para así saber cuánto podemos comprar; si lo llevamos al plano, podemos escribir esta correspondencia en una ecuación de función "x" como el precio y la cantidad de producto como "y". Función Afín Se puede aplicar en muchas situaciones, por ejemplo en economía (uso de la oferta y la demanda) los ecónomos se basan en la linealidad de esta función y las leyes...
913 Palabras | 4 Páginas
Leer documento completoconcepto de ecuaciones cuadráticas. El/la estudiante entregará la tarea en un cartapacio debidamente identificando su nombre, curso, sección y día. Si el/la estudiante tiene acceso a programas de computadoras tales como MS Office o Lotus SmartSuite, podrá utilizarlos en la presentación de la tarea a realizar. No se aceptarán impresos directos de los sitios de Internet accesados ni fotocopias. Buscar la definición y demostrar ejemplos sobre los siguientes conceptos o procesos: • Ecuación cuadrática-...
756 Palabras | 4 Páginas
Leer documento completoUna ecuación de segundo grado[1] [2] o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. La expresión canónica general de una ecuación cuadrática de una variable es: donde x representa la variable y a , b y c son constantes ; a es el coeficiente cuadrático (distinto de 0), b el coeficiente lineal...
1309 Palabras | 6 Páginas
Leer documento completoFunciones cuadráticas Una función f es una función cuadrática si, y solo si, se pueden expresar f(x) en la forma f(x) =ax2 + b x + c, en donde a, b y c son constantes y a =0. Por ejemplo, las funciones f(x)= x2-3x+2 y f(t) = -3t2 son cuadráticas. Sin embargo, g(x) =1/x2 no es cuadrática porque se puede expresar en la forma g(x) = ax2+bx+c. la grafica de la función cuadrática y=f(x) =ax2+bx+c se denomina parábola y sus formas son como la de las graficas siguientes. parábola; f(x) =ax2 + bx...
575 Palabras | 3 Páginas
Leer documento completoECUACIÓN DE SEGUNDO GRADO. 1) Identificar los coeficientes a, b, y c. a) y2 + 7y – 3 = 0 b) 6x2 = 0 c) 2) Reduce y ordena cada una de las siguientes ecuaciones: a) 6x2 +4 = 16 + 4x2 b) ( y – 1)2 – ( y – 2)2 = y2 c) d) 3) Resuelve las siguientes ecuaciones cuadráticas incompletas: a) 8x2 – 7x = 0 b) 16y2 – 361 = 0 c) y2 + y = 0 d) (y-2)(y-3) = 9y + 6 e) 4 (x - 2)2 = (x – 8)2 f) (x – 13)2=(x – 12)2 + ( x – 5)2 4) Resuelve las siguientes ecuaciones...
590 Palabras | 3 Páginas
Leer documento completoRESEÑA HISTÓRICA DE ECUACIONES CUADRÁTICAS Hasta el siglo XVII, la teoría de ecuaciones estuvo limitada pues los matemáticos no fueron capaces de aceptar que los números negativos y complejos podían ser raíces de ecuaciones polinómicas. Sólo los antiguos matemáticos indios, como Brahmagupta, conocían las raíces negativas, pero fuera de China e India no se trabajaba con coeficientes negativos en los polinomios. En vez de un solo tipo de ecuación de segundo grado, el mencionado más arriba, había seis...
976 Palabras | 4 Páginas
Leer documento completoDefinición: Una ecuación cuadrática es una ecuación de la forma ax2 + bx + c = 0 donde a, b, y , c son números reales y a es un número diferente de cero. Ejemplos: x2 - 9 = 0; x2 - x - 12 = 0; 2x2 - 3x - 4 = 0 La condición de que a es un número diferente de cero en la definición asegura que exista el término x2 en la ecuación. Existen varios métodos para resolver las ecuaciones cuadráticas. Elmétodo apropiado para resolver una ecuación cuadrática depende del tipo de ecuación cuadrática que se va a resolver...
1213 Palabras | 5 Páginas
Leer documento completoTEMA : ECUACIÓN DE SEGUNDO GRADO. NOMBRE: _____________________________________ CURSO: __________________ 1) Identificar los coeficientes a, b, y c. a) y2 + 7y – 3 = 0 b) 6x2 = 0 c) 8p 2 x 0 q 2) Reduce y ordena cada una de las siguientes ecuaciones a la forma ax2 + bx + c = 0. a) 6x2 +4 = 16 + 4x2 b) ( y – 1)2 – ( y – 2)2 = y2 c) 3 1 xx 4 x 3 2 5 2 d) 9 ( x 3) 2 4x 2 8 3) Resuelve las siguientes ecuaciones cuadráticas incompletas: a) 8x2 – 7x...
1114 Palabras | 5 Páginas
Leer documento completoECUACIONES CUADRÁTICAS Una función f es una función cuadrática si y solo si f(x) puede escribirse en la forma f (x) = ax2 + bx + c = 0, donde a, b y c son constantes y a / 0. Por ejemplo las funciones f (x) = x2 – 3x + 2 y F (t) = -3t2 son cuadráticas. Sin embargo, g (x) = 1 no es cuadrática, ya que no puede escribirse de la forma x2 g (x) = ax2 + bx + c. La gráfica de la función cuadrática y = f (x) = ax2 + bx + c se llama parábola. Si a > 0, la gráfica se...
1411 Palabras | 6 Páginas
Leer documento completo-1001395-84518500 FUNCION CUADRATICA 31737306858000 Integrantes: Fabiola Pinto Constanza CavieresCurso: 3ero medio A INDICE Introducción……………………………………………………………………………………………..-3 Función cuadrática…………………………………………………………………………………….-4 Elementos…………………………………………………………………………………………………5-9 Traslación……………………………………………………………………………………………………-10 Ejemplos…………………………………………………………………………………………………….-11-12 Conclusión………………………………………………………………………………………………….-13 INTRODUCCIÓN ...
1296 Palabras | 6 Páginas
Leer documento completoUna ecuación de segundo grado[1] [2] o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. La expresión canónica general de una ecuación cuadrática de una variable es: ax^2 + bx + c = 0, \quad \mbox{para}\;a\neq 0 donde x representa la variable y a, b y c son constantes; a es el coeficiente cuadrático...
557 Palabras | 3 Páginas
Leer documento completoCuando un polinomio es igual a cierto valor (ya sea un entero u otro polinomio), el resultado es una ecuación. Una ecuación que puede ser escrita de la forma ax2 + bx + c = 0 se llama ecuación cuadrática. Podemos resolver estas ecuaciones cuadráticas usando las reglas del álgebra, aplicando técnicas de factorización donde sea necesario, y usando la Propiedad Cero de la Multiplicación. La Propiedad Cero de la Multiplicación La Propiedad Cero de la Multiplicación establece (¡en términos algebraicos...
1399 Palabras | 6 Páginas
Leer documento completoMatemática – Prof. Guido Drassich Introducción al Análisis Matemático Trabajo Práctico: Ecuaciones Cuadráticas. las cuadráticas. 1 - Resolver las siguientes ecuaciones cuadráticas. 1.1 - Resolver las siguientes ecuaciones cuadráticas por factorización: a) x² – 13x = 0 b) x² = - 19x c) x² - 24 = - 5x d) x² - 12x + 36 = 0 e) 16x² + 9 = 24x f) 6 + x2 = 5x g) – 9x = -x2 – 8 1.2 – Resolver las siguientes ecuaciones cuadráticas completando el cuadrado a) x2 – 6x + 27 = 2x + 14 b) 3x2 + 6 = 12x c) x2 – 5 = -2x...
820 Palabras | 4 Páginas
Leer documento completoLas ecuaciones cuadráticas pueden ser de tres tipos. 1) Ec. Cuadrática Completa. Es de la forma ax^+ bx + c = 0 , con a b y c reales y a distinto de cero. Ej: 5x^2 + 3x - 1 2) Ec. Cuadrática Incompleta ( Pura). Cuando b = 0, o sea de la forma: ax^2 + c = 0 Ej : 2x^2 - 9 = 0 3) Ec. Cuadrática Incompleta (Factorizable por x) Cuando c = 0 ax^2 + bx = 0 Ej: 7x^2 - 5x = 0 Es todo, espero te sirva. Clasificación y comentario del que hace la pregunta Cuadraticas...
1092 Palabras | 5 Páginas
Leer documento completowww.amatematicas.cl Cuadrática 073 1 1) Determinar k de modo que cada ecuación tenga sus raíces iguales: 2 a) x - 5.x + k = 0 2 b) 3.x + 8.x + k = 0 2 c) 2.x - 6.x + k = 0 2 d) 25.x + k.x + 1 = 0 2 e) k.x + k.x + 1 = 0 2) Hallar las intersecciones con los ejes, los vértices y graficar las siguientes funciones: a) y = x2 - 12.x + 32 e) y = x2 + x/2 - ½ i) y = x2 - 2.x + ¾ b) y = x2 - x - 12 f) y = x2 - 5.x/2 + 1 j) y = x2...
853 Palabras | 4 Páginas
Leer documento completoUna ecuación cuadrática, o de segundo grado, con una incógnita x, es una ecuación de la forma indicada, donde a, b, y c son números reales dados, con a distinto de cero. Se puede resolver empleando la fórmula cuadrática. Si b2>4ac hay dos soluciones reales distintas; si b2=4ac hay una sola solución real; si b2<4ac no hay soluciones reales, pero sí dos soluciones complejas conjugadas FÓRMULA CUADRÁTICA | | | | Ecuaciones cuadráticas En la lección previa aprendimos lo que es una ecuación...
508 Palabras | 3 Páginas
Leer documento completoGestión Institucional Bach Industrial Especialidad: _____________________ UNIDAD DE APRENDIZAJE Nº 2 Ecuaciones Cuadráticas 1.0 ÁREA: Álgebra 1.1 OBJETIVOS: * Resuelven, por diferentes métodos, ecuaciones cuadráticas. * Aplican las ecuaciones cuadráticas en la solución de problemas. * Utilizan los elementos esenciales de la factorización. 1.2 INTRODUCCIÓN La palabra “cuadrática” se deriva del vocablo latino “quadratus”, que significa “cuadrado”. Por muchos años, los matemáticos...
1513 Palabras | 7 Páginas
Leer documento completoregla del producto nulo puede aplicarse para resolver ecuaciones que, aunque no sean lineales, pueden reducirse a dos ecuaciones lineales. Por ejemplo, si (x-2x)(x+3)= 0 Entonces es posible igualar cada factor en el producto a cero, para luego proceder a resolver las ecuaciones resultantes. x-2 = 0 o x + 3 = 0 x=0 x= -3 Así, las soluciones son 2 y -3. De haberse comenzado con la ecuación x2 + x – 6 = 0, y al continuar con el procedimiento...
521 Palabras | 3 Páginas
Leer documento completoTEMA 6 ECUACIONES CUADRÁTICAS Introducción. Para su estudio las ecuaciones de segundo grado se clasifican en incompletas y completas, a su vez las ecuaciones incompletas se subdividen en incompletas puras e incompletas mixtas, de esta manera la clasificación de las ecuaciones cuadráticas la podríamos resumir de la siguiente manera: puras : ax2 + c = 0 incompletas mixtas: ax2 +bx = 0 Ecuaciones cuadráticas Completas : ax2 + bx + c = 0 Las ecuaciones completas...
1567 Palabras | 7 Páginas
Leer documento completoEcuación de segundo grado Los puntos comunes de una parábola con el eje X (recta y = 0), las raíces, son las soluciones reales de la ecuación cuadrática. Una ecuación de segundo grado1 2 o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. La expresión canónica general de una ecuación cuadrática de...
1411 Palabras | 6 Páginas
Leer documento completoUSOS DE LA ECUACION CUADRATICA EN LA VIDA En el campo laboral tiene utilidad, como por ejemplo en química, cinética química para describir la variación en la concentración de reactantes respecto a la concentración de productos en un determinado tiempo; en física para el movimiento parabólico. En el ámbito militar lo usan en artillería de cañones para hallar las trayectorias de las balas. En economía usan las ecuaciones cuadráticas para representar modeles económicos...
1355 Palabras | 6 Páginas
Leer documento completoECUACIONES CUADRÁTICAS DEFINICIÓN: Es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio desegundo grado o polinomio cuadrático. RESOLUCIÓN DE ECUACIONES CUADRÁTICAS Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales. Ejemplo: 9x2 + 6x + 10 a = 9, b = 6, c = 10 3x2 - 9x a = 3, b = -9, c = 0 -6x 2 +...
684 Palabras | 3 Páginas
Leer documento completo Ecuaciones Cuadráticas Sólo si se puede poner en la forma ax2 + bx + c = 0, donde a, b, y c son números reales y a no es cero. El nombre viene de "cuad" que significa cuadrado, así que la mejor pista es que la potencia sea un cuadrado (en otras palabras x2). Todas estas son ecuaciones cuadráticas disfrazadas: Disfrazada En forma estándar a, b y c x2 = 3x -1 x2 - 3x + 1 = 0 a=1, b=-3, c=1 2(x2 - 2x) = 5 2x2 - 4x - 5 = 0 a=2, b=-4, c=-5 x(x-1) = 3 x2 - x - 3 = 0 a=1, b=-1, c=-3 ...
606 Palabras | 3 Páginas
Leer documento completoEl análisis de la ecuación cuadrática es la continuación del estudio de la ecuación lineal con una incógnita, tratada con anterioridad. Encontrar la solución de una ecuación cuadrática es más difícil de abordar y se necesitan nuevos métodos, así, como el conocimiento previo de álgebra elemental en especial de expresiones algebraicas. En analogía con la ecuación lineal que genera una recta en el plano cartesiano, la ecuación cuadrática genera el objeto geométrico llamado Parábola, cuyo estudio...
804 Palabras | 4 Páginas
Leer documento completoEcuaciones de segundo grado Una ecuación es una relación matemática entre números y letras. Normalmente se trabaja con ecuaciones en las que sólo hay una letra, llamada incógnita, que suele ser la x. Resolver la ecuación consiste en encontrar un valor (o varios) que, al sustituirlo por la incógnita, haga que sea cierta la igualdad. Ese valor es la solución de la ecuación. Por ejemplo, resolver la ecuación: x − 1 = 0 El número que hace que esa ecuación sea cierta es el 1, ya que 1 – 1...
565 Palabras | 3 Páginas
Leer documento completoECUACIONES CUADRATICAS Toda ecuación de la forma ax2+bx+c=0 en la que a ≠ 0 es una ecuación de segundo grado o ecuación cuadrática. La ecuación de segundo grado en la que b=0 es una ecuación cuadrática pura. Las ecuaciones ax2+c=0 , 8x2-32=0 , 3x2-27=0 , 5x2+125=0 son cuadráticas puras. La ecuación cuadrática pura carece del termino de primer grado la ecuación de segundo grado en la que c=0 es una ecuación cuadrática mixta incompleta. Las ecuaciones ax2+bx=0 5x2-15x=0 25x2+75x=0...
942 Palabras | 4 Páginas
Leer documento completoECUACIONES CUADRATICAS Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales. Ejemplo: 9x2 + 6x + 10 a = 9, b = 6, c = 10 3x2 - 9x a = 3, b = -9, c = 0 -6x 2 + 10 a = -6, b = 0, c = 10 Hay tres formas de hallar las raíces (el o los valores de la variable) de las ecuaciones cuadráticas: 1. Factorización Simple 2. Completando el Cuadrado 3. Fórmula Cuadrática Factorización Simple: La factorización...
888 Palabras | 4 Páginas
Leer documento completoECUACIONES CUADRÁTICAS Prof. Evelyn Dávila GEMA 120 Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la formula cuadrática. El primer paso para cualquiera de los dos métodos es escribir la ecuación en la forma estándar , es decir, la ecuación igualada a cero. En este material les presentaré el método para resolver una ecuación cuadrática mediante la sustitución en la f’ormula cuadrática. FÓRMULA CUADRÁTICA Al utilizar la fórmula...
562 Palabras | 3 Páginas
Leer documento completoLa ecuación cuadrática o también conocida como la ecuación de segundo grado es aquella ecuación que obedece a un polinomio de segundo grado de la forma ax2 + bx + c igual a cero. ecuacion general de segundo grado Donde el coeficiente "a" es necesariamente diferente a cero (En el caso que a = 0 se obtiene una ecuación lineal o de primer orden) Método de solución de la ecuación cuadrática Lo primero es dividir la ecuación completa por el primer término ¨a¨ forma canonica de la ecuacion...
797 Palabras | 4 Páginas
Leer documento completoINTRODUCCIÓN Las ecuaciones siempre han sido un tema muy importante en las matemáticas y obviamente en el algebra ya que se utilizan casi para todo, incluso hasta en la vida diaria, por lo cual es muy importante que se tenga un buen dominio de estas. A continuación se va a hablar de las ecuaciones cuadráticas o de segundo grado, se va a explicar como es una ecuación cuadrática, como esta estructurada y las diferentes formulas existentes para resolverlas dependiendo el caso. Espero que los temas...
770 Palabras | 4 Páginas
Leer documento completoEcuaciones Cuadráticas – Factorización Por: Melissa Murrias Revisado por: Dra. Luz M. Rivera Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales. Ejemplo: 9x2 + 6x + 10 a = 9, b = 6, c = 10 3x2 - 9x a = 3, b = -9, c = 0 -6x 2 + 10 a = -6, b = 0, c = 10 Hay tres formas de hallar las raíces ( el o los valores de la variable) de las ecuaciones cuadráticas: 1. Factorización...
1339 Palabras | 6 Páginas
Leer documento completoEcuación cuadrática Fórmula general < Ecuación cuadrática Consideremos la ecuación general de segundo grado (ecuación cuadrática) que tiene la forma: Resolver esta ecuación implica encontrar el valor o los valores de que cumplen con la expresión, si es que existen. Cuando nos enfrentamos por primera vez en la vida a esta clase de problemas, la primera forma en la que se intenta dar una respuesta es probando con varios números hasta "atinarle" (ya sea porque nos sonría la buena fortuna, o por...
701 Palabras | 3 Páginas
Leer documento completoEcuaciones cuadráticas Una ecuación cuadrática es de la forma con a, b y c siendo números reales. Vamos a mostrar 2 formas de resolver las ecuaciones, que serán por formula general y factorización por inspección. La primera que explicaremos será la formula general. Primero tenemos una ecuación cuadrática 9=0 entonces para aplicar la formula tenemos que saber que = 9 =6 = 10 (importante, siempre será de esta forma, es el numero al lado de b es el numero al lado de y será el último número) cuando...
951 Palabras | 4 Páginas
Leer documento completoEcuaciones Cuadraticas: Definición: Una ecuación cuadrática es una ecuación de la forma ax2 + bx + c = 0 donde a, b, y , c son números reales y a es un número diferente de cero. La condición de que a es un número diferente de cero en la definición asegura que exista el término x2 en la ecuación. Existen varios métodos para resolver las ecuaciones cuadráticas. El método apropiado para resolver una ecuacióncuadrática depende del tipo de ecuación cuadrática que se va a resolver. En este cu...
729 Palabras | 3 Páginas
Leer documento completoHistoria La ecuación de segundo grado y la solución tiene origen antiguo. Se conocieron algoritmos para resolverla en Babilonia y Egipto. En Grecia fue desarrollada por el matemático Diofanto de Alejandría. La solución de las ecuaciones de segundo grado fue introducida en Europa por el matemático judeoespañol Abraham bar Hiyya, en su Liber embadorum. [editar] Clasificación La ecuación de segundo grado se clasifica de la siguiente manera: 1.- Completa: Tiene la forma canónica: donde...
1109 Palabras | 5 Páginas
Leer documento completo¿Cómo resolver una función cuadrática por el método grafico? Por Mariela Torres Ruiz La ecuación cuadrática que resolveremos por el método grafico es x2-x-2=0 1. Lo primero que se tiene que hacer es igualar la ecuación a “Y” Y=x2-x-2 2. Después tienes que tabular (obtener los valores) del 3 al -3 (pueden variar los valores de “X”) y para poder tabular se tiene que sustituir el valor de “X” en la ecuación. X Y 3 2 1 0 -1 -2 -3 4 0 Cuando “X” vale 3 Y= (3)2-(3)-2 Y=9-3-2 ...
515 Palabras | 3 Páginas
Leer documento completoECUACION CUADRATICA. La ecuación cuadrática o también conocida como la ecuación de segundo grado es aquella ecuación que obedece a un polinomio de segundo grado de la forma ax2 + bx + c igual a cero. Donde el coeficiente "a" es necesariamente diferente a cero (En el caso que a = 0 se obtiene una ecuación lineal o de primer orden). METODO DE SOLUCION DE LA ECUACION CUADRATICA. Lo primero es dividir la ecuación completa por el primer término ¨a¨ ax2+bx+c=0→x2+bax+ca=0 Se procede a completar...
655 Palabras | 3 Páginas
Leer documento completo LAS ECUACIONES CUADRATICAS O DE SEGUNDO GRADO DEFINICIÓN: Una ecuación cuadrática es una ecuación de la forma: ax2 + bx + c = 0 donde a, b, y , c son números reales y a es un número diferente de cero. Ejemplos: x2 - 9 = 0; x2 - x - 12 = 0; 2x2 - 3x - 4 = 0 La condición de que a es un número diferente de cero en la definición asegura que exista el término x2 en la ecuación. METODOS Existen varios métodos para resolver las ecuaciones cuadráticas. El método apropiado para r...
654 Palabras | 3 Páginas
Leer documento completoLMDE Algebra Resumen y Ejercicios Ecuaciones cuadráticas (2) I. Una ecuación cuadrática con coeficientes reales es una ecuación de la forma ax 2 + bx + c = 0, a ≠ 0 siendo a, b, c números reales. Ejemplos de ecuaciones cuadráticas: x 2 − 4 x = 0 ; 2 x 2 − 3x + 1 = 0 ; x 2 + 5 x + 6 = 0 ; 5 x 2 − 20 = 0 ; x 2 + 1 = 0 II. Raíz o solución de una ecuación cuadrática. Un número r es una raiz o una solución de la ecuación cuadrática ax 2 + bx + c = 0 , si y solo si, al sustituir x por r ...
1130 Palabras | 5 Páginas
Leer documento completoLa ecuación cuadrática o también conocida como la ecuación de segundo grado es aquella ecuación que obedece a un polinomio de segundo grado de la forma ax2 + bx + c igual a cero. Donde el coeficiente "a" es necesariamente diferente a cero (En el caso que a = 0 se obtiene unaecuación lineal o de primer orden) Método de solución de la ecuación cuadrática Lo primero es dividir la ecuación completa por el primer término ¨a¨ Se procede a completar un trinomio cuadrado perfecto con la expresión ...
594 Palabras | 3 Páginas
Leer documento completoR=Grueso del marco= X Paso N°3. Pensar en un planteamiento para representar las incógnitas. A) determine la ecuación cuadrática que plantea de manera correcta este problema. (20-2x) (14-2x)=160 280-40x-28x+4x2=160 Paso N°4. Utilicen el álgebra para resolver la ecuación o ecuaciones resultantes. B) utilice el método de factorización o la formula general para resolver la ecuación y determinen las raíces del problema. a b c 4x2-68x+280=0 X= -b±b2-4ac2a X=-(-68)±682-44(280)2(4) ...
1045 Palabras | 5 Páginas
Leer documento completo Ecuaciones cuadráticas Anteriormente trabajamos con ecuaciones lineales. Las ecuaciones lineales son ecuaciones polinómicas de grado uno. Ahora estudiaremos ecuaciones polinómicas de grado dos conocidas como ecuacionescuadráticas. Definición: Una ecuación cuadrática es una ecuación de la forma ax2 + bx + c = 0 donde a, b, y , c son números reales y a es un número diferente de cero. Ejemplos: x2 - 9 = 0; x2 - x - 12 = 0; 2x2 - 3x - 4 = 0 La condición de que a es un número diferente de...
579 Palabras | 3 Páginas
Leer documento completoECUACIONES CUADRÁTICAS Instrucción: Resolver los siguientes ejercicios y problemas de ecuaciones cuadráticas: 1) Resuelva las siguientes ecuaciones: a) b) 2) Mensualmente una compañía puede vender “x” unidades de cierto artículo a p soles cada uno, donde p = 1400-40x. Determine el número de artículos que debe vender la compañía para obtener un ingreso de 12000 soles, si se sabe que la cantidad por vender debe ser mayor a 17 unidades. 3) Un fabricante de relojes de pared tiene un ingreso...
567 Palabras | 3 Páginas
Leer documento completoUna ecuación de segundo grado, ecuación cuadrática o resolvente es una ecuación polinómica donde el mayor exponente es igual a dos. Normalmente, la expresión se refiere al caso en que sólo aparece una incógnita y que se expresa en la forma canónica: donde a es el coeficiente cuadrático o de segundo grado y es siempre distinto de 0, b el coeficiente lineal o de primer grado y c es el término independiente. Expresada del modo más general, una ecuación cuadrática en es de la forma: con n un número...
1280 Palabras | 6 Páginas
Leer documento completo2012-2013 ECUACIÓN DE SEGUNDO GRADO Una ecuación de segundo grado o ecuación cuadrática es una ecuación algebraica de segundo grado. Es decir que la mayor potencia de la incógnita considerada en la ecuación, es dos. La expresión general de una ecuación cuadrática es ax2 + bx + c = 0, con a ≠ 0 donde x representa la variable y a, b y c son constantes; a es un coeficiente cuadrático (distinto de 0), b el coeficiente lineal y c es el término independiente. La gráfica de una función cuadrática es una...
929 Palabras | 4 Páginas
Leer documento completoLección 4-3 ECUACIONES DE SEGUNDO GRADO Objetivos: ü Definir ecuación de segundo grado. ü Resolver la ecuación de segundo grado aplicando propiedades de la igualdad. ü Resolver la ecuación de segundo grado aplicando factorizaciones. ü Resolver la ecuación de segundo grado completando el trinomio cuadrado perfecto. ü Resolver la ecuación de segundo grado aplicando la formula general. ü Identificar la naturaleza de las soluciones de la ecuación de segundo grado analizando el discriminante. Una...
1421 Palabras | 6 Páginas
Leer documento completoEcuación cuadrática 305 1 www.amatematicas.cl TERCER AÑO MEDIO PLAN DIFERENCIADO. NOMBRE I. ECUACION CUADRÁTICA INCOMPLETA PURA. Dadas las ecuaciones cuadráticas, clasifícalas y determina los coeficientes a, b y c : 1 3 5 3x2 - 12x + 11 = 0 3x 1 x 2 + 2 + 7x + = x−2 x+2 x2 − 4 2 x(x+3) = 2x + 2 2 4 6 -10x2 + 12,1 = 0 x + 4 3x + 4 = x +1 x+3 x(x + 3) = 5x - 1 Resuelve las siguientes ecuaciones cuadráticas incompletas : 7 4x2 - 9 = 0 8 1 2 x...
1350 Palabras | 6 Páginas
Leer documento completoEcuaciones Cuadráticas – Factorización Por: Melissa Murrias Revisado por: Dra. Luz M. Rivera Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales. Ejemplo: 9x2 + 6x + 10 a = 9, b = 6, c = 10 3x2 - 9x a = 3, b = -9, c = 0 -6x 2 + 10 a = -6, b = 0, c = 10 Hay tres formas de hallar las raíces ( el o los valores de la variable) de las ecuaciones cuadráticas: 1. Factorización...
618 Palabras | 3 Páginas
Leer documento completoEs un tipo de ecuación particular en la cual la variable o incógnita está elevada al cuadrado, es decir, es de segundo grado. Un ejemplo sería: 2x2 – 3x = 9. En este tipo de ecuación no es posible despejar fácilmente la x, por lo tanto se requiere un procedimiento general para hallar las soluciones. Soluciones de una ecuación cuadrática: El procedimiento consiste en realizar modificaciones algebraicas en la ecuación general de la ecuación de segundo grado: ax2 + bx + c = 0 hasta que la x quede despejada...
510 Palabras | 3 Páginas
Leer documento completoLA ACTIVIDAD: Solución de problemas utilizando ecuaciones cuadráticas y sistema de dos ecuaciones lineales con dos incógnitas. Problema 1 El marco de una fotografía mide 20 cm de ancho por 14 de alto si la fotografía tiene un área de 160 m2. ¿Cuánto mide el grueso del marco? I) determine la ecuación cuadrática que plantea de manera correcta este problema II) utilicen el método de factorización o la formula general para resolver la ecuación y determinen las raíces del problema III)...
1064 Palabras | 5 Páginas
Leer documento completoECUACIONES CUADRÁTICAS Curso: Matemática Básica 1. Definición: Son aquellas ecuaciones que adquieren la forma general: ax2 bx c 0 . Donde: ax2 se denomina término cuadrático bx se denomina término lineal c se denomina término independiente 2. Métodos de Solución: Toda ecuación de segundo grado tiene dos soluciones o raíces, las que obtendremos aplicando los dos métodos siguientes. 2.1. Por factorización: Consiste en factorizar por el método apropiado y luego se iguala cada factor a...
813 Palabras | 4 Páginas
Leer documento completo265 Ecuaciones de segundo grado Resolución de ecuaciones completas de segundo grado sin denominadores aplicando la fórmula general P r o c e d i m i e n t o 1. Se lleva la ecuación a la forma 2. Se identifican los coeficientes a, b y c, con su respectivo signo 3. Se hallan las raíces de la ecuación aplicando la fórmula general Resolver las siguientes ecuaciones por la fórmula general: 266 Ecuaciones de segundo grado Resolución de ecuaciones...
1726 Palabras | 7 Páginas
Leer documento completoParte: Selección Única Valor 10 ptos Escriba una equis (X) dentro del paréntesis que antecede a la respuesta correcta, en caso de error escriba (X) y proceda a marcar nuevamente. 1 pto cada respuesta correcta. 1. Un ejemplo de función cuadrática cóncava hacia abajo es ( ) f(x) = 4x – 2 + 5x2 ( ) f(x) = x2 + 7x + 10 ( ) f(x) = 2x — 5x2 + 2 ( ) f(x) = 2x2 — 1 2. La función definida por f(x) = x – 10 + 7x2 interseca al eje y en ( ) (0,1) ( ) (0, 7) ( )...
727 Palabras | 3 Páginas
Leer documento completoEcuación En matemáticas, una ecuación es una igualdad[nota 1] entre dos expresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, y desconocidos o incógnitas, relacionados mediante operaciones matemáticas. Los valores conocidos pueden ser números, coeficientes o constantes; y también variables cuya magnitud se haya establecido como resultado de otras operaciones. Las incógnitas, representadas generalmente por letras, constituyen los valores que se pretende hallar...
546 Palabras | 3 Páginas
Leer documento completoenfrían, aunque sometidos a compresión su volumen es muy poco variable a diferencia de lo que sucede con otros fluidos como los gases. Los objetos inmersos en algún líquido son sujetos a un fenómeno conocido como flotabilidad. Su forma es esférica si sobre él no actúa ninguna fuerza externa. Por ejemplo, una gota de agua en caída libre toma la forma esférica.1 Como fluido sujeto a la fuerza de la gravedad, la forma de un líquido queda definida por su contenedor. En un líquido sujeto a la gravedad en...
838 Palabras | 4 Páginas
Leer documento completoEjercicios. Grupo 14 Resuelve la ecuación por factorización o por formula general y comprueba las raíces por sustitución en la ecuación original. 7. (x-3)(x+2)=6 x^2-x-6=6 x^2-x-12=0 (x-4)(x+3)=0 x-4=0 x+3=0 x=4 x=-3 Comprobación: (4-3)(4+2)=6 (1)(6)=6 6=6 (-3-3)(-3+2)=6 (-6)(-1)=6 6=6 17. (x-5)(x+1)=2〖(x-2)〗^2 x^2-4x-5=2(x^2-4x+4) x^2-4x-5=2x^2-8x+8 x^2-2x^2-4x+8x-5-8=0 -x^2+4x-13=0 x^2-4x+13=0 a=1 b=-4...
771 Palabras | 4 Páginas
Leer documento completo