Arquimede
Fue un matemático griego, físico, ingeniero, inventor y astrónomo. Aunque se conocen pocos detalles de su vida, es considerado uno de los científicos más importantes de la antigüedad clásica. Entre sus avances en física se encuentran sus fundamentos en hidrostática, estática y la explicación del principio de la palanca. Es reconocido por haber diseñado innovadoras máquinas,incluyendo armas de asedio y el tornillo de Arquímedes, que lleva su nombre. Experimentos modernos han probado las afirmaciones de que Arquímedes llegó a diseñar máquinas capaces de sacar barcos enemigos del agua o prenderles fuego utilizando una serie de espejos.
Principio de Arquímedes:
Arquímedes afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje deabajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerza1 recibe el nombre de empuje hidrostático o de Arquímedes, y se mide en newtons (en el SIU). El principio de Arquímedes se formula así:
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de lagravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales2 y descrito de modo simplificado3 ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
Ejemplo del Principio deArquímedes: El volumen adicional en la segunda probeta corresponde al volumen desplazado por el sólido sumergido (que naturalmente coincide con el volumen del sólido).
Demostración:
Aunque el principio de Arquímedes fue introducido como principio, de hecho puede considerarse un teorema demostrable a partir de las ecuaciones de Navier-Stokes para un fluido en reposo, mediante el teorema deStokes (igualmente el principio de Arquímedes puede deducirse matemáticamente de las ecuaciones de Euler para un fluido en reposo que a su vez pueden deducirse generalizando las leyes de Newton a un medio continuo). Partiendo de las ecuaciones de Navier-Stokes para un fluido:
(1)
La condición de que el fluido incompresible que esté en reposo implica tomar en la ecuación anterior , lo que permitellegar a la relación fundamental entre presión del fluido, densidad del fluido y aceleración de la gravedad:
(2)
A partir de esa relación podemos reescribir fácilmente las fuerzas sobre un cuerpo sumergido en términos del peso del fluido desalojado por el cuerpo. Cuando se sumerge un sólido K en un fluido, en cada punto de su superficie aparece una fuerza por unidad de superficie perpendiculara la superficie en ese punto y proporcional a la presión del fluido p en ese punto. Si llamamos al vector normal a la superficie del cuerpo podemos escribir la resultante de las fuerzas sencillamente mediante el teorema de Stokes de la divergencia:
(3)
Donde la última igualdad se da sólo si el fluido es incompresible.
Principio de Arquímedes
El principio de Arquímedes afirma quetodo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado.
La explicación del principio de Arquímedes consta de dos partes como se indica en la figuras:
1. El estudio de las fuerzas sobre una porción de fluido en equilibrio con el resto del fluido.
2. La sustitución de dicha porción de fluido por un cuerpo sólido de la misma forma ydimensiones.
Porción de fluido en equilibrio con el resto del fluido.
Consideremos, en primer lugar, las fuerzas sobre una porción de fluido en equilibrio con el resto de fluido. La fuerza que ejerce la presión del fluido sobre la superficie de separación es igual a p•dS, donde p solamente depende de la profundidad y dS es un elemento de superficie.
Puesto que la porción de fluido se...
Regístrate para leer el documento completo.