Auditoria
(FXDFLRQHV 'LIHUHQFLDOHV 2UGLQDULDV
&H&DO
3UREOHPD GH FRQGLFLyQ LQLFLDO 3ODQWHR \ UHVXOWDGRV VREUH SURSDJDFLyQ GH HUURUHV 3ODQWHR GHO SUREOHPD 6H GHQRPLQD HFXDFLyQ GLIHUHQFLDO RUGLQDULD ('2 FRQ FRQGLFLyQ LQLFLDO DO SUREOHPD GH KDOODU XQD IXQFLyQ \ ([ ) GHILQLGD HQ XQ LQWHUYDOR D, E TXH FXPSOD
[]
G\ = I ([, \ )∀[ ∈ [j, E ] ('2 G[ \ (D) = F
([LVWHQ WpFQLFDV DQDOtWLFDV TXH SHUPLWHQ KDOODU OD VROXFLyQ H[DFWD
GH ('2 /RV PpWRGRV QXPpULFRV SDUD OD UHVROXFLyQ GH ('2 WUDWDQ GH DSUR[LPDU OD IXQFLyQ VROXFLyQ \ ([ ) SRU XQD HVWLPDFLyQ GH VXV YDORUHV HQ XQ FRQMXQWR ILQLWR GH SXQWRV /DV ('2 DSDUHFHQ HQ P~OWLSOHV SUREOHPDV GH OD FLHQFLD \ OD WHFQRORJtD (Q RFDVLRQHV OD YDULDEOHLQGHSHQGLHQWH HV HO WLHPSR \ OD HFXDFLyQ GLIHUHQFLDO H[SUHVD OD OH\ TXH JRELHUQD ORV FDPELRV GHO VLVWHPD
\ ([ ) HQ D ≤ [ ≤ E SDUD FLHUWRV WLSRV
(O FDVR JHQHUDO GHO SUREOHPD HV HO GH XQ VLVWHPD GH ('2 GH SULPHU RUGHQ FRQ YDULDV IXQFLRQHV LQFyJQLWD η1 , η2 ,....., η V Gη = ϕ ( [ , η1 , η2 ,....., η ) L = 1, 2 ,...., V G[
L L V
η (D ) = γ
L
L
L = 1, 2 ,...., V
FRQGLFLRQHVLQLFLDOHV
(O VLVWHPD DQWHULRU VH SXHGH HVFULELU HQ IRUPD YHFWRULDO WRPDQGR
I = (ϕ 1 ,ϕ 2 ,....., ϕ V ) F = (γ 1 ,γ 2 ,....., γ V )
7
\ = ( 1 ,η 2 ,.....,η V ) η
7
7
FRQ OR FXDO HO SUREOHPD TXHGD GH OD IRUPD FDQyQLFD ('2 VLHQGR DKRUD \ XQ YHFWRU
G\ = I ([, \ ) FRQ G[
\ (D ) = F
2EVHUYDFLyQ 8QD ('2 GH RUGHQ PD\RU TXH VLHPSUH VH SXHGH FRQYHUWLU HQ XQ VLVWHPD GH ('2 GHSULPHU RUGHQ 'DGD OD HFXDFLyQ GLIHUHQFLDO GH RUGHQ Q FRQ FRQGLFLRQHV LQLFLDOHV
\ (D
GQ\ G\ G 2 \ G Q −1 \ = J [, \ , , 2 ,......, Q −1 G[ G[ G[ Q G[
Q −1 G\ (D ) = γ 2 , ......., G Q − \ 1 G[ G[ VH SXHGH HIHFWXDU HO FDPELR GH YDULDEOHV η1 = \ G\ η2 = G[ G2\ η3 = 2 G[ G Q −1 \ ηQ = Q −1 G[
)=
γ
1
,
(D ) =
γ
Q
\ GHULYDQGR
Gη1 = η2 G[ Gη2 = η3 G[ η1 (D ) = γ 1 η 2 (D ) = γ 2
Gη Q G Q \ = Q = J ( 1 ,η 2 ,.....,η Q ) η Q (D ) = γ Q η G[ G[
(QWRQFHV OODPDQGR
\ = (η 1 , η 2 ,....., η Q ) , I ( [ , \ ) = (η 2 , η 3 ,... , J( [ , \ ))
7
OD HFXDFLyQ VH SXHGH HVFULELU FRPR
G\ = I ( [ , \) = \( 2), \( 3),......., J ( [, \) G[
(
)
7
2EVHUYDFLyQ 8Q VLVWHPD HVWi HQ OD IRUPD DXWyQRPD VL I QR GHSHQGH H[SOtFLWDPHQWHGH [
&XDOTXLHU VLVWHPD QR DXWyQRPR VH OOHYD D XQR DXWyQRPR DJUHJDQGR OD HFXDFLyQ WULYLDO
G\ = I (\ ) G[
Gη V +1 = 1, η V +1 (D ) = D G[
TXH WLHQH VROXFLyQ
η V +1 ([ ) = [
7HRUHPD GH H[LVWHQFLD \ XQLFLGDG GH OD VROXFLyQ GH XQD ('2 V+1 V 6L VH DVXPH TXH OD IXQFLyQ I : ' ⊂ 5 → 5 ; HV GLIHUHQFLDEOH ∀[ ∈ D , E
\ SDUD WRGR YHFWRU
\ = (η 1 , ..., η V ) ∈ ' \ ⊂ 5 V VLHQGR '\ XQ FLHUWR GRPLQLR TXH FRQWLHQH D F FRPR SXQWR LQWHULRU HQWRQFHV OD VROXFLyQ H[LVWH \ HV ~QLFD GHSHQGLHQGR VROR GH OD FRQGLFLyQ LQLFLDO PLHQWUDV \ ([ ) SHUPDQH]FD HQ ' \
'HILQLFLyQ I ( [ , \ ) YHULILFD OD FRQGLFLyQ GH /LVSFKLW] HQ HO SXQWR ( [ 0 , \ 0 ) ∈ ' UHVSHFWR GH OD VHJXQGD YDULDEOH VL ∃8 ⊆ ' HQWRUQR GH ( [ 0 , \ 0 ) \ /! WDO TXH
∀( [ , \1 ),( [ , \2 ) ∈8 ⇒ I ( [ , \1 )− I ( [ , \2 ) ≤ / \1 − \2
7DPELpQ HV YiOLGR XQ WHRUHPD GH H[LVWHQFLD \ XQLFLGDG FRQ KLSyWHVLV XQ SRFR PiV GpELOHV TXH ODV DVXPLGDV 7HRUHPD V V +1 6HD I : ' → 5 ; FRQWLQXD, siendo D un abierto de 5 6L I FXPSOH OD FRQGLFLyQ GH /LVSFKLW] UHVSHFWR GH OD VHJXQGD YDULDEOH HQ ' HQWRQFHV HO SUREOHPD SODQWHDGR WLHQH VROXFLyQ ~QLFD 2EVHUYDFLyQ 6L I [, \ = I [ LQGHSHQGLHQWH GH \ HQWRQFHV OD ('2SDVD D VHU XQ SUREOHPD GH LQWHJUDFLyQ
(
)
()
G\ I ([, \ ) = I ([ ) ⇒ = I ([ ) ⇒ \ ([ ) = ∫ I (X )GX VL \ (D ) = 0 G[ D
[
3UHVHQWDFLyQ GH ORV HOHPHQWRV GH XQ PpWRGR QXPpULFR GH UHVROXFLyQ GH ('2 D WUDYpV GHO PpWRGR GH (XOHU 6L
(O YDORU K VH GHQRPLQD SDVR \ HQ HVWH PpWRGR VH DGRSWD FRQVWDQWH
\ ([ ) HV OD VROXFLyQ GH OD HFXDFLyQ GLIHUHQFLDO HO REMHWLYR VHUi KDOODU...
Regístrate para leer el documento completo.