Distribuciones Bernoulli

Páginas: 8 (1869 palabras) Publicado: 15 de abril de 2015
distribuciones bernoulli

En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito () y valor 0 para la probabilidad de fracaso ().
Si es una variable aleatoria que mide el "número de éxitos", yse realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria se distribuye como una Bernoulli de parámetro .

La fórmula será:

Su función de probabilidad viene definida por:


Un experimento al cual se aplica la distribución de Bernoulli se conoce como Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos como ensayosrepetidos.

Ejemplo1
Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces
B(4, 0.5) p = 0.5q = 0.5




Distribución normal

En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece aproximada en fenómenos reales

Lagráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana.

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo defenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.

De hecho, la estadística descriptiva sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental,de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional.

La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:

caracteres morfológicos deindividuos como la estatura;
caracteres fisiológicos como el efecto de un fármaco;
caracteres sociológicos como el consumo de cierto producto por un mismo grupo de individuos;
caracteres psicológicos como el cociente intelectual;
nivel de ruido en telecomunicaciones;
errores cometidos al medir ciertas magnitudes;
etc.

La distribución normal también aparece en muchas áreas de la propiaestadística. Por ejemplo, la distribución muestral de las medias muestrales es aproximadamente normal, cuando la distribución de la población de la cual se extrae la muestra no es normal.1 Además, la distribución normal maximiza la entropía entre todas las distribuciones con media y varianza conocidas, lo cual la convierte en la elección natural de la distribución subyacente a una lista de datos resumidos entérminos de media muestral y varianza. La distribución normal es la más extendida en estadística y muchos tests estadísticos están basados en una supuesta "normalidad".
En probabilidad, la distribución normal aparece como el límite de varias distribuciones de probabilidad continuas y discretas.

Ejemplio 1

La vida media de una lámpara, según el fabricante, es de 68 meses, con una desviacióntípica de 5. Se supone que se distribuye según una distribución normal En un lote de 10.000 lámparas. a) ¿Cuántas lámparas superarán previsiblemente los 75 meses?. b) ¿Cuántos lámparas se estropearán antes de 60 meses?

a)
t = (75 -68)/5 = 1,4
P (X > 75) = (t > 1,4) = 1 - P (t ≤ 1,4) = 1 - 0,9192 = 0,0808

Luego, el 8,08% de las lámparas (808 lámparas) superarán los 75 meses

b)
t = (60 -68)/5 =...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Bernoulli
  • BERNOULLI
  • Bernoulli
  • Bernoulli.
  • Bernoulli
  • Bernoulli
  • Bernoulli
  • BERNOULLI

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS