Division de polinomios

Páginas: 3 (629 palabras) Publicado: 26 de abril de 2011
Resolver la división de polinomios:
P(x) = x5 + 2x3 − x − 8         Q(x) = x2 − 2x + 1
P(x) :  Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en loslugares que correspondan.

A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3
Multiplicamos cada términodel polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo:

Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lomultiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2 x2

Procedemos igual que antes.
5x3 : x2 = 5 x

Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8

10x − 6 es elresto, porque su grado es menor que el del divisor y por tanto no se puede continuar dividiendo.
x3 + 2x2 + 5x + 8 es el cociente.
Resolver la división de polinomios:
P(x) = x5 + 2x3 − x − 8Q(x) = x2 − 2x + 1
P(x) : Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.

A la derecha situamos el divisor dentro de unacaja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3
Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos delpolinomio dividendo:

Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2x2

Procedemos igual que antes.
5x3 : x2 = 5 x

Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8

10x − 6 es el resto, porque su grado es menor que el del divisor y por tanto no se puedecontinuar dividiendo.
x3 + 2x2 + 5x + 8 es el cociente.
Resolver la división de polinomios:
P(x) = x5 + 2x3 − x − 8 Q(x) = x2 − 2x + 1
P(x) : Q(x)
A la izquierda situamos el...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Divisíon de polinomios
  • División Entre Polinomios
  • Division de polinomios
  • Division de polinomios
  • Division De Polinomios
  • Division de Polinomios
  • Division De Polinomios
  • División de polinomios

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS