Doc prueba
Proponer el inicio y desarrollo del pensamiento variacional como uno de los logros para alcanzar en la educación básica, presupone superar la enseñanza de contenidos matemáticos fragmentados y compartimenta izados, para ubicarse en el dominio de un campo conceptual, que involucra conceptos y procedimientos interestructuradosy vinculados que permitan analizar, organizar y modelar matemáticamente situaciones y problemas tanto de la actividad práctica del hombre, como de las ciencias y las propiamente matemáticas donde la variación se encuentre como sustrato de ellas. En esta forma se amplía la visión de la variación, por cuanto su estudio se inicia en el intento de cuantificar la variación por medio de las cantidades ylas magnitudes. Una rápida visión a la evolución histórica, desde las matemáticas, del estudio de la variación permite afirmar que ésta se inicia con las tablas babilónicas, con las gráficas de variación (Oresme en la Edad Media) y con las fórmulas algebraicas de origen renacentista. Particularmente, el contexto de la variación proporcional para modelar las situaciones de variación cobra especialrelevancia por ser la única teoría matemática con la que se contaba en la Edad Media. Pero es en el contexto del estudio matemático del movimiento donde se alcanza la construcción matemática de la variación, lo que configura el Cálculo. Esta breve e incompleta presentación histórica de la variación, hace necesario desmenuzar los conceptos, procedimientos y métodos que involucra la variación paraponer al descubierto las interpelaciones entre ellos. Un primer acercamiento en la búsqueda de las interrelaciones permite identificar algunos de los núcleos conceptuales matemáticos en los que está involucrada la variación: * Continuo numérico, reales, en su interior los procesos infinitos, su tendencia, aproximaciones sucesivas, divisibilidad; * la función como dependencia y modelos defunción; * las magnitudes; * el álgebra en su sentido simbólico, liberada de su significación geométrica, particularmente la noción y significado de la variable es determinante en este campo; * modelos matemáticos de tipos de variación: aditiva, multiplicativa, variación para medir el cambio absoluto y para medir el cambio relativo. La proporcionalidad cobra especial significado. En loscontextos de la vida práctica y en los científicos, la variación se encuentra en contextos de dependencia entre variables o en contextos donde una misma cantidad varía (conocida como medición de la variación absoluta o relativa). Estos conceptos promueven en el estudiante actitudes de observación, registro y utilización del lenguaje matemático. Abordado así el desarrollo del pensamiento variacional seasume por principio que las estructuras conceptuales se desarrollan en el tiempo, que su aprendizaje es un proceso que se madura progresivamente para hacerse más sofisticado, y que nuevas situaciones problemáticas exigirán reconsiderar lo aprendido para aproximarse a las conceptualizaciones propias de las matemáticas. Entre los diferentes sistemas de representación asociados a la variación seencuentran los enunciados verbales, las representaciones tabulares, las gráficas de tipo cartesiano o sagital, las representaciones pictóricas e icónicas, la instruccional (programación), la mecánica (molinos), las fórmulas y las expresiones analíticas. El estudio de la variación puede ser iniciado pronto en el currículo de matemáticas. El significado y sentido acerca de la variación puedeestablecerse a partir de las situaciones problemáticas cuyos escenarios sean los referidos a fenómenos de cambio y variación de la vida práctica. La organización de la variación en tablas, puede usarse para iniciar en los estudiantes el desarrollo del pensamiento variacional por cuanto la solución de tareas que involucren procesos aritméticos, inicia también la comprensión de la variable y de las...
Regístrate para leer el documento completo.