Ejercicios de probabilidad
Por cada propiedad se entrega un ejercicio resuelto.
1. P(A B) = P(A) + P(B). Se extrae una carta al azar de un mazo inglés normal de 52 cartas. Supongamos que definimos los eventos A: "sale 3" y B: "sale una figura" y se nos pregunta por la probabilidad de que ocurra A ó B. Como estos eventos no pueden ocurrir simultáneamente, o sea, son mutuamenteexcluyentes, A B = y entonces
P(A ó B) = P(A B) = P(A) + P(B)
= P(sale 3) + P(sale figura) = 4/52 + 12/52 = 4/13.
2. P(A) + P(Ac) = 1. En el mismo experimento anterior de sacar una carta, el evento A: "no sale rey" tiene como complemento al evento "sale rey", entonces resulta mas simple calcular la probabilidad de A como 1 - P(Ac):
P(no sale rey) = 1 - P(sale rey) = 1 - 4/52 = 12/13
3.P(A B) = P(A) + P(B) - P(A B). En el lanzamiento de un dado de seis caras, los eventos A: "sale par" y B: "sale primo" tienen itersección no vacía: A B = {2}, entonces la probabilidad del evento "sale par o primo" = A ó B es
P(A o B) = P(A B) = P(A) + P(B) - P(A B)
= 3/6 + 3/6 - 1/6 = 5/6
4. P(A B) = P(A)•P(B). Lanzamos un dado de seis caras dos veces. Los eventos: A: "sale par en el primerlanzamiento" y B: "sale un 3 en el segundo", son eventos independientes, entonces la probabilidad de que "salga par en el primero y un 3 en el segundo" es
P(A y B) = P(A B) = P(A)•P(B) = (3/6)•(1/6)
= 1/12
5. P(A B) = P(A)•P(B/A). ó P(B/A) = P(A B)/ P(A) [P(B/A) es la probabilidad del evento B, sabiendo que ha ocurrido A]. En la extracción de una carta de un mazo inglés normal: ¿cuál es laprobabilidad de que la carta extraída sea el as de corazones, sabiendo que la carta extraída es de corazones?
Debemos calcular P(as/corazón). La probabilidad de "as y corazón" es 1/52. La probabilidad de corazón es 13/52.
Luego, P(as/corazón) = P(as y corazón)/P(corazón) = (1/52)/(13/52) = 1/13.
Probabilides, Algunas Definiciones
Espacio Muestral.- Se llama espacio muestral (E) asociado a unexperimento aleatorio, el conjunto de todos los resultados posibles de dicho experimento.
Al lanzar una moneda, el espacio muestral es E = {sale cara, sale sello} ó E = {c, s}.
Al lanzar un dado de seis caras, el espacio muestral es
E = {sale 1, sale 2, sale 3, sale 4, sale 5, sale 6}
ó E = {1, 2, 3, 4, 5, 6}
Al lanzar dos monedas, el espacio muestral es
E = {(c,c), (c,s), (s,c),(s,s)}.
Al lanzar tres monedas, el espacio muestral es E = {(c,c,c), (c,c,s), (c,s,c), (c,s,s), (s,c,c), (s,c,s), (s,s,c), (s,s,s)}
Evento o Suceso. Se llama evento o suceso a todo subconjunto de un espacio muestral. Por ejemplo en el espacio muestral E = {1, 2, 3, 4, 5, 6} del lanzamiento de un dado, los siguientes son eventos:
1. Obtener un número primo A = {2, 3, 5}
2. Obtener un númeroprimo y par B = {2}
3. Obtener un número mayor o igual a 5 C = {5, 6}
Eventos mutuamente excluyentes.- Dos eventos son mutuamente excluyentes si no pueden ocurrir en forma simultánea, esto es, si y sólo si su intersección es vacía. Por ejemplo, en el lanzamiento de un dado los eventos B = {2} y C = {5, 6} son mutuamente excluyentes por cuanto
B C =
Eventos Complementarios.- Si A B = y A B =E, se dice que A y B son eventos complementarios: Ac = B y
Bc = A
Su Medición Matemática o Clásica. Si en un experimento aleatorio todos los resultados son equiprobables (iguales probabilidades), es decir, la ocurrencia de uno es igualmente posible que la ocurrencia de cualquiera de los demás, entonces, la probabilidad de un evento A es la razón:
P(A) = número de casos favorables paraA/número total de casos posibles
A partir de esta definición las probabilidades de los posibles resultados del experimento se pueden determinar a priori, es decir, sin realizar el experimento.
Se deduce de la definición lo siguiente:
0 P(A) 1 La medición probabilística es un número real entre 0 y 1, inclusive, ó 0% P(A) 100% en porcentaje.
P() = 0 y P(E) = 1
Su Medición Experimental o...
Regístrate para leer el documento completo.