Eneregio Geotecnica A Lo Vio
Aplicación grafica
Elanálisis gráfico es una alternativa eficiente para enfrentar la resolución de modelos de Programación Lineal en 2 variables, donde el dominio de puntos factibles (en caso de existir) se encontrará en el primer cuadrante, como producto de la intersección de las distintas restricciones del problema lineal.
Una de las propiedades básicas de un modelo de Programación Lineal que admite solución, es queésta se encontrará en el vértice o frontera (tramo) del dominio de pntos factibles. Es decir, si luego de gráficar el dominio y evaluar los distintos vértices de modo de elegir "el mejor" candidato según sea nuestro caso (el valor de la función objetivo será la que nos permitirá discriminar cual es el mejor candidato dependiendo si estamos maximizando o minimizando).
Consideremos un EjemploIntroductorio en 2 variables:
* D) MIN 8X + 6
* S.A. 2X + Y >= 10
* ...... .2X + 2Y >= 16
* ..... ..X>= 0, Y>= 0
Comentario: Nótese que corresponde al Problema Dual de P) cuya resolución se presenta en nuestro sitio como ejemplo introductorio en la utilización de Solver de MS Excel. Para ver el detalle de la resolución gráfica de P) se recomienda al usuario ingresar AQUI.Para resolver el problema D) graficamos el dominio de puntos factibles y las curvas de nivel asociadas a la función objetivo:
El área achurada en color verde representa el dominio de puntos factibles del problema D), es decir, son las distintas combinaciones de valores que pueden adoptar las variables de decisión que satisfacen las restricciones del problema. Cabe destacar que esto corresponde aun dominio no acotado, lo que no implica que el problema no tenga solución.
Por otra parte sabemos que el óptimo de un problema lineal se encuentra en un vértice o frontera del dominio de puntos factibles. En este caso tenemos 3 vértices candidatos al óptimo los cuales se señalan con flecha blanca y azul. El vértice (X,Y)= (0,10) con V(P)=60; (X,Y)=(2,6) con V(P)=52 y (X,Y)=(8,0) con V(P)=64. Elmínimo valor para la función objetivo se alcanza en (X,Y)=(2,6) con V(P)=52, el cual resulta ser la Solución Óptima de D). Sin embargo, una forma más eficiente para obtener el óptimo que no implique evaluar cada vértice en la función objetivo, es desplazando las curvas de nivel de la función objetivo en la dirección del máximo decrecimiento (en el caso de un problema de minimización). Para unproblema de minimización, el mayor decrecimiento se alcanza en la dirección del vector " - Gradiente F(X,Y)", en nuestro caso el vector con dirección (-8,-6) (dirección representada por flecha roja). Luego, el óptimo se alcanza en el último punto donde las curvas de nivel intersectan al dominio de puntos factibles en la dirección del máximo decrecimiento, cuya solución obviamente correspondea (X,Y)=(2,6) con V(P)=52.
A
* ..... ..X>= 0, Y>= 0
La resolución gráfica de este ejemplo permite obtener la solución óptima X=15, Y=15 con valor óptimo V(P)=105, tal como se observa en 0 => R2 no es una restricción activa
* R3: 5*(15) + 5*(15) = 150 => R3 es una restricción activa
En el caso que el lado derecho de la restricción sea un recurso, resulta lógico tener una disposición apagar por unidad adicional en la medida que dicho recurso se este ocupando a máxima capacidad. En consecuencia, una restricción no activa tiene por definición un precio somra igual a cero (caso de R2) ya que un aumento del lado derecho no aumentará el valor óptimo actualV(P)=150. Sin embargo, sólo en casos muy particulares podemos encontrar restricciones activas con precio sombra (o costo...
Regístrate para leer el documento completo.