Enlaces Quimicos
Un gran salto adelante es lo que han conseguido científicos del centro de investigación de IBM en Zúrich, que han podido diferenciar por primera vez los distintos enlaces químicos existentes en moléculas individuales utilizando la microscopía de fuerza atómica (AFM), una técnica que cada vez tiene más aplicaciones y que nació en ese mismo laboratorio en 1986.La investigación, ala que han suministrado las moléculas estudiadas el Centro de Investigación en Química Biológica y Materiales Moleculares de la Universidad de Santiago de Compostela e investigadores del CNRS francés, ha sido portada del último número de la revista Science.
Este logro en el ámbito de la nanotecnología está próximo al límite de resolución de la técnica utilizada y puede ser importante para elestudio de los dispositivos fabricados con grafeno. Actualmente, se está estudiando la aplicación de estos dispositivos en ámbitos como las comunicaciones inalámbricas de banda ancha o las pantallas electrónicas.
“Hemos encontrado dos mecanismos de contraste diferentes para distinguir los enlaces. El primero se basa en pequeñas diferencias en la fuerza medida sobre los enlaces. Esperábamos este tipode contraste pero ha sido un reto el resolverlo” afirma Leo Gross, de IBM. “El segundo mecanismo de contraste llegó por sorpresa: los enlaces aparecieron con diferentes longitudes en las medidas del AFM. Con la ayuda de cálculos computacionales encontramos que la inclinación de una molécula de monóxido de carbono en el ápice de la punta de la sonda era la causa del contraste”. La molécula de CO enla terminación de la punta actúa como una potente lupa para revelar la estructura atómica de la molécula, incluyendo sus enlaces
Los investigadores lograron visualizar el orden y la longitud de enlaces individuales entre átomos de carbono en nanoestructuras de fulerenos , también conocidas como buckyball por su forma de balón de fútbol, y en dos hidrocarburos policíclicos aromáticos (PAHs porsus siglas en inglés) planos Los enlaces individuales entre átomos de carbono en estas moléculas difieren sutilmente en su fuerza y longitud.
“Caracterizar la fuerza de los diferentes enlaces en una molécula compleja es importante para predecir su geometría, estabilidad, aromaticidad y reactividad”, señala Rubén Pérez (Universidad Autónoma de Madrid) en un artículo que acompaña al de los autoresdel descubrimiento.
Este incremento del conocimiento de moléculas individuales es importante para las investigaciones sobre nuevos dispositivos electrónicos, células solares orgánicas y diodos orgánicos emisores de luz (OLEDs por sus siglas en inglés). En particular, mediante esta técnica podría observarse la relajación de los enlaces alrededor de los defectos en el grafeno, o los cambios queexperimentan los enlaces en las reacciones químicas y en estados excitados
La electronegatividad (abreviación EN, símbolo χ (letra griega chi)), es la medida de la capacidad de un átomo (o de manera menos frecuente un grupo funcional) para atraer hacia él los electrones, o densidad electrónica, cuando forma un enlace en una molécula.1También debemos considerar la distribución de densidad electrónicaalrededor de un átomo determinado frente a otros distintos, tanto en una especie molecular como en sistemas o especies no moleculares. El flúor es el elemento con más electronegatividad, el francio es el elemento con menos electronegatividad.
La electronegatividad de un átomo determinado, esta afectada fundamentalmente por dos magnitudes: su masa atómica y la distancia promedio de los electronesde valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia.2 La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de...
Regístrate para leer el documento completo.