estimaciones y pruebas de hipotesis
TRABAJO DE ESTADISTICAS
TEMA: ESTIMACIONES Y PRUEBAS DE HIPOTESIS
DOCENTE: ING. FAUTO PALACIO.
ALUMNO: MARIO DIAZ JR.
FECHA: 27/02/2015
ESTIMACIONES:
En inferencia estadística se llama estimación al conjunto de técnicas que permiten dar un valor aproximado de un parámetro de una población a partir de los datos proporcionados por una muestra. Por ejemplo, una estimación de la media deuna determinada característica de una población de tamaño N podría ser la media de esa misma característica para una muestra de tamaño n.[1]
La estimación se divide en tres grandes bloques, cada uno de los cuales tiene distintos métodos que se usan en función de las características y propósitos del estudio:
1. Estimación puntual:[
a) Método de los momentos;
b) Método de la máxima verosimilitud;
c)Método de los mínimos cuadrados;
2. Estimación por intervalos.
3. Estimación bayesiana.
Estimador:
Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra estadistica.
Estimación puntual:
Consiste en la estimación del valor del parámetro mediante un sólo valor, obtenido de una fórmula determinada. Por ejemplo, si se pretende estimarla talla media de un determinado grupo de individuos, puede extraerse una muestra y ofrecer como estimación puntual la talla media de los individuos. Lo más importante de un estimador, es que sea un estimador eficiente. Es decir, que sea insesgado(ausencia de sesgos) y estable en el muestreo o eficiente (varianza mínima) Estimación puntual. Sea X una variable poblacional con distribución Fθ ,siendo θ desconocido. El problema de estimación puntual consiste en, seleccionada una muestra X1, ..., Xn, encontrar el estadístico T(X1, ..., Xn) que mejor estime el parámetro θ. Una vez observada o realizada la muestra, con valores x1, ..., xn, se obtiene la estimación puntual de θ, T(x1, ..., xn) = ˆ θ .
Vemos a continuación dos métodos para obtener la estimación puntual de un parámetro: método delos momentos y método de máxima verosimilitud. Método de los momentos: consiste en igualar momentos poblacionales a momentos muestrales. Deberemos tener tantas igualdades como parámetros a estimar. Momento poblacional de orden r αr = E(Xr) Momento muestral de orden r ar = Xn i=1 Xr i n
Método de máxima verosimilitud: consiste en tomar como valor del parámetro aquel que maximice la probabilidad deque ocurra la muestra observada. Si X1, ..., Xn es una muestra seleccionada de una población con distribución Fθ o densidad fθ(x), la probabilidad de que ocurra una realización x1, ..., xn viene dada por: Lθ(x1, ..., xn) = Yn i=1 fθ(xi)
A Lθ(x1, ..., xn) se le llama función de verosimilitud.(credibilidad de la muestra observada). Buscamos entonces el valor de θ que maximice la función deverosimilud, y al valor obtenido se le llama estimación por máxima verosimilitud de θ. Nota: si la variable X es discreta, en lugar de fθ(xi ) consideramos la función masa de probabilidad pθ(xi).
Ejemplo 7.1: Sea X → N(µ, σ), con µ desconocido. Seleccionada una m.a.s. X1, ..., Xn, con realización x1, ..., xn, estimamos el parámetro µ por ambos métodos. Según el método de los momentos: E(X) = Xn i=1 Xi n = −X, y al ser µ = E(X) se obtiene que ˆ µ = − x. Por el método de máxima verosimilitud: Lµ(x1, ..., xn) = Yn i=1 fµ(xi ) = = Yn i=1 1 √ 2πσ e −(xi−µ) 2 2σ
Estimación por Intervalos de confianza 109 y maximizamos en µ tal función; en este caso resulta más fácil maximizar su logaritmo: lnLµ(x1, ..., xn) = − 1 2σ 2 Xn i=1 (xi − µ) 2 − n ln( √ 2πσ) ∂ ∂µ lnLµ(x1, ..., xn) = 1 σ 2 Xn i=1 (xi − µ) = n − x− nµ σ 2 = 0 ⇐⇒ ˆ µ = −
Estimación por intervalos:
Consiste en la obtención de un intervalo dentro del cual estará el valor del parámetro estimado con una cierta probabilidad. En la estimación por intervalos se usan los siguientes conceptos:
Intervalo de confianza:
El intervalo de confianza es una expresión del tipo [θ1, θ2] ó θ1 ≤ θ ≤ θ2, donde θ es el parámetro a estimar. Este intervalo...
Regístrate para leer el documento completo.