figuras topologicas

Páginas: 42 (10488 palabras) Publicado: 19 de septiembre de 2014



FIGURAS TOPOLOGICAS
CURSO: DIBUJO INDUSTRIAL






























INTRODUCCION
En este trabajo se analizó el tema de figuras topológicas que nos dio a comprender lo importante que es hoy en día, ya que tiene una variedad de aplicaciones, abracando más a la tecnología que hoy en día es el motor del crecimiento socioeconómico a nivel mundial,generándonos mayor comodidad en las actividades rutinarias.
Se da a conocer las teorías en la cual se rige, después dando a conocer sus aplicaciones para comprender a fondo lo útil que es las figuras topológicas, a nivel del curso se analizara su importancia, dando a conocer sus utilidades y beneficios.

MARCO TEORICO
TOPOLOGIA
A mediados del siglo XIX comenzó un desarrollo completamente nuevo engeometría que pronto se convertiría en una de las grandes fuerzas de las matemáticas modernas. La nueva rama, llamada analysissitus (“análisis de la posición”) o topología, tiene como objeto de estudio las propiedades de las figuras geométricas que permanecen invariantes al someterlas a deformaciones continuas, por lo que también es conocida como geometría de la láminaelástica.

Dice un chiste queunatopología no distingue entre una taza de café y una rosquilla porque ambas son iguales desde un punto de vista topológico (si la taza estuviese hecha de plastilina podríamos deformarla continuamente hasta obtener la forma de una rosquilla).










Sin embargo una magdalena no es topológicamente equivalente a unarosquilla porque ´esta tiene un agujero y la primera no (el número deagujeroses un invariante topológico).

Otro invariante topológico es el número de caras de una superficie: unaesfera o un cilindro tienen dos caras (una interior y otra exterior que podríapintarse de colores distintos sin que estos colores se encontrasen).

Sin embargo una banda de Moebius, que se obtiene a partir de una cinta de papel a la que damos un giro antes de pegar por el borde,tiene una sola cara.




LA FÓRMULA DE EULER PARA LOS POLIEDROS

Aunque la topología es una creación de los últimos 150 años, antes hubo algunos descubrimientos aislados que encontraron su lugar en el desarrollo sistemático moderno. El más importante de estos descubrimientos es una formula que relaciona el número de vértices, de aristas y de caras de un poliedro simple, la cual fue observada en1640 por Descartes y redescubierta y utilizada por Euler en 1752.
En un poliedro simple si V denota el número de vértices, A el número de aristas y C el número de caras entonces siempre se cumple la igualdad

V − A + C = 2


Recuerda que un poliedro es un sólido cuya superficie consta de un cierto número de caras poligonales. Un poliedro es simple si no tiene “agujeros”, de manera que susuperficie puede deformarse continuamente en la superficie deuna esfera.


EL TEOREMA DEL PUNTO FIJO DE BROUWER

En las aplicaciones de la topología a otras ramas de las matemáticas los teoremas de “punto fijo” desempeñan un papel importante. Un ejemplo típico es el siguiente teorema de Brouwer: consideremos un disco circular en el plano,
i.e., la región que consta del interior de un circulojunto con su circunferencia, y supongamos que sus puntos son sometidos a cualquier transformacióncontinua bajo la cual cada punto permanece dentro del círculo pero situado de manera diferente. Por ejemplo un disco delgado hecho de hule puede ser aplastado, girado, doblado, estirado o deformado (pero no rasgado) de cualquier manera siempre y cuando la posición final de cada punto del discopermanezca dentro de su circunferencia original. O por ejemplo la superficie de una taza de café puede ser agitada de tal modo que las partículas sobre la superficie permanezcan en está pero cambien de posición.


El teorema del punto fijo de Brouwerestablece que cada una de tales transformaciones deja al menos un punto fijo o invariante, es decir, existe al menos un punto cuya posicióndespués de la...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Arquitectura topologica
  • Variedad Topologica
  • Arreglos Topologicos
  • Figuras
  • Figuras
  • Figuras
  • La Figura
  • figuras

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS