Formulario Calculo
CÁLCULO DIFERENCIAL
VER.3.7
E INTEGRAL
Jesús Rubí Miranda (jesusrubi1@yahoo.com)
http://mx.geocities.com/estadisticapapers/
http://mx.geocities.com/dicalculus/
VALOR ABSOLUTO
a si a ≥ 0
a =
− a si a < 0
a = −a
n
= ∏ ak
k
k =1
n
n
∑a
k =1
≤ ∑ ak
k
k =1
EXPONENTES
a ⋅a = a
p
q
( a ⋅ b)
k =1
− ak −1 ) = an − a0
k −1k =1
n
(a + l )
2
n
1− r
a − rl
=a
=
1− r
1− r
n
1
∑ k = 2 (n
q
ap/q = ap
k =1
LOGARITMOS
n
log a MN = log a M + log a N
M
= log a M − log a N
N
log a N r = r log a N
log a
logb N ln N
=
logb a
ln a
2
ALGUNOS PRODUCTOS
a ⋅ ( c + d ) = ac + ad
(a + b) ⋅ ( a − b) = a − b
2
( a + b ) ⋅ ( a + b ) = ( a + b ) = a 2 + 2ab + b 2
2
a − b ) ⋅( a − b ) = ( a − b ) = a 2 − 2ab + b 2
(
( x + b ) ⋅ ( x + d ) = x 2 + ( b + d ) x + bd
( ax + b ) ⋅ ( cx + d ) = acx 2 + ( ad + bc ) x + bd
( a + b ) ⋅ ( c + d ) = ac + ad + bc + bd
3
( a + b ) = a3 + 3a 2 b + 3ab 2 + b3
3
( a − b ) = a 3 − 3a 2 b + 3ab 2 − b3
2
( a + b + c ) = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
2
( a − b ) ⋅ ( a 2 + ab + b 2 ) = a 3 − b 3
( a − b ) ⋅ ( a3 + a 2 b+ ab2 + b3 ) = a 4 − b 4
( a − b ) ⋅ ( a 4 + a 3b + a 2 b 2 + ab3 + b 4 ) = a 5 − b5
n
( a − b ) ⋅ ∑ a n −k b k −1 = a n − b n ∀n ∈
k =1
∞
2
3
2
2
2
1
1
3
2
2
0
∞
1
cos ( −θ ) = cos θ
sen (θ + 2π ) = sen θ
cos (θ + 2π ) = cosθ
tg (θ + 2π ) = tg θ
sen (θ + π ) = − sen θ
cos (θ + π ) = − cosθ
tg (θ + π ) = tg θ
sen (θ + nπ ) = ( −1)sen θ
n
cos (θ + nπ ) = ( −1) cos θ
tg (θ + nπ ) = tg θ
0.5
-0.5
cos ( nπ ) = ( −1)
-1
-2
-8
-6
-4
-2
0
2
4
6
8
Gráfica 2. Las funciones trigonométricas csc x ,
n
sec x , ctg x :
k =1
n
n!
, k≤n
=
k ( n − k )! k !
n
n n−k k
n
(x + y) = ∑ x y
k =0 k
n
2.5
2
1.5
CONSTANTES
π = 3.14159265359…
e =2.71828182846…
TRIGONOMETRÍA
CO
sen θ =
HIP
CA
cosθ =
HIP
sen θ CO
=
tg θ =
cos θ CA
0
nk
k
x
-0.5
-1
csc x
sec x
ctg x
-2
-2.5
-8
1
sen θ
1
secθ =
cos θ
1
ctg θ =
tg θ
cscθ =
-6
-4
-2
0
2
4
6
8
Gráfica 3. Las funciones trigonométricas inversas
arcsen x , arccos x , arctg x :
4
3
2
1
0
-1
-2
-3
n
2n + 1 sen
π = ( −1)
2
2n + 1
cos
π=0
2
2n + 1
tg
π=∞
2
sen (α ± β ) = sen α cos β ± cos α sen β
-1.5
arc sen x
arc cos x
arc tg x
-2
-1
0
1
2
3
tg α + tg β
ctg α + ctg β
e x − e− x
2
e x + e− x
cosh x =
2
senh x e x − e − x
tgh x =
=
cosh x e x + e− x
1
e x + e− x
=
ctgh x =
tgh x e x − e − x
1
2
=
sech x =
coshx e x + e − x
1
2
csch x =
=
senh x e x − e − x
senh x =
cosh :
tgh :
ctgh :
→
→ [1, ∞
→ −1,1
− {0} → −∞ , −1 ∪ 1, ∞
sech :
→ 0 ,1]
csch :
− {0} →
cos (α ± β ) = cos α cos β ∓ sen α sen β
tg α ± tg β
tg (α ± β ) =
1 ∓ tg α tg β
sen 2θ = 2 sen θ cosθ
cos 2θ = cos 2 θ − sen 2 θ
2 tg θ
tg 2θ =
1 − tg 2 θ
1
sen 2 θ = (1 − cos 2θ )
2
1
cos 2 θ = (1 + cos 2θ)
2
1 − cos 2θ
tg 2 θ =
1 + cos 2θ
− {0}
Gráfica 5. Las funciones hiperbólicas senh x ,
cosh x , tgh x :
5
π
sen θ = cos θ −
2
π
cos θ = sen θ +
2
1
0.5
n!
n
=∑
x1n1 ⋅ x2 2
n1 !n2 ! nk !
n
tg ( nπ ) = 0
sen x
cos x
tg x
-1.5
1
sen (α − β ) + sen (α + β )
2
1
sen α ⋅ sen β = cos (α − β ) − cos (α + β )
2
1cos α ⋅ cos β = cos (α − β ) + cos (α + β )
2
sen α ⋅ cos β =
senh :
sen ( nπ ) = 0
0
sen (α ± β )
cos α ⋅ cos β
FUNCIONES HIPERBÓLICAS
tg ( −θ ) = − tg θ
y ∈ 0, π
5
tg α ⋅ tg β =
n
n! = ∏ k
π radianes=180
2
sen ( −θ ) = − sen θ
1
+ ( 2n − 1) = n 2
+ xk )
IDENTIDADES TRIGONOMÉTRICAS
sen θ + cos 2 θ = 1
tg 2 θ + 1 = sec 2 θ
1.5...
Regístrate para leer el documento completo.