integrales

Páginas: 25 (6114 palabras) Publicado: 15 de abril de 2013
Ejercicios de Análisis Matemático
Integrales. Aplicaciones del cálculo integral
ex sen x
. Justifica que f es integrable en Œ0; 1 y se verifica la desigualdad
x
1
0 6 0 f .x/ dx 6 e 1.

1. Sea f .x/ D

Solución. Como 0 6 sen x 6 x para todo x 2 Œ0; 1, se sigue que 0 6 f .x/ 6 ex 6 e para todo
x 20; 1. En consecuencia la función f está acotada y es continua en Œ0; 1 n f0g. Concluimosque f es integrable en Œ0; 1. Alternativamente, podemos definir f .0/ D 1 con lo que cual resulta
continua en todo el intervalo Œ0; 1. Finalmente, como la integral conserva el orden, tenemos que:
1

0 6 f .x/ 6 e

x

8x 2 Œ0; 1 ÷

06

1

f .x/ dx 6
0

0

ex dx D e 1

©
2. Sea f una función continua y positiva en Œa; b con
todo x 2 Œa; b.
Solución. Sea x 2 Œa; b.Pongamos
b
xf

b
af

D

b
af
x
a f

x
a f

C

b
a f .x/ dx

x
a f

b
xf

D 0. Prueba que f .x/ D 0 para

. Como f .t/ > 0 para todo t 2 Œa; b,
x

> 0. Deducimos que a f D 0. Como f
>
se verifica que
> 0, por lo que 0 D
es derivable en Œa; b y F 0 .x/ D f .x/ para todo
es continua en Œa; b, la función F.x/ D
x 2 Œa; b. Evidentemente, F 0 es la función nula,luego f .x/ D 0 para todo x 2 Œa; b.
x

Alternativamente, la función F.x/D a f .t/ dt es derivable con F 0 .x/Df .x/>0, lo que implica
que F es creciente en Œa; b. Como F.a/DF.b/D0, deducimos que F.x/D0 para todo x 2 Œa; b,
lo que implica que f es la función nula en Œa; b.
©
3. Justifica las desigualdades:
a/

1
<
6

2

0

dx
1
1
< I b/ p <
10 C x
5
10 2

1

0

x 9 dx1
1
nC1
1
<
I c/
< log
< :
10 C x
10
nC1
n
n


n
1
Deduce de la última desigualdad que e D lKm 1 C n .
ı

Solución. El resultado obtenido en el ejercicio anterior nos dice que si f es una función continua,
b
positiva y no idénticamente nula en un intervalo Œa; b, entonces se verifica que a f .x/ dx > 0.
Las desigualdades propuestas son todas consecuencia de esteresultado.
1
1
1
1
a) Para 0 6 x 6 2 las funciones f .x/ D
y g.x/ D
son continuas,
10 10 C x
10 C x
12
2
2
positivas y no idénticamente nulas en Œ0; 2, luego 0 f .x/ dx > 0 y 0 g.x/ dx > 0. Esto prueba
las desigualdades pedidas.
1
1
1
c) Dado n 2 N, para todo x 2 Œn; n C 1 se tiene que
< < . Razonando com antes, se
nC1
x
n
sigue que:
1
D
nC1

nC1

n

1
dx <
nC1

nC1n

1
nC1
dx D log
<
x
n

nC1

n

1
1
dx D :
n
n

Lo que prueba la desigualdad del enunciado. Multiplicando por n dicha desigualdad se obtiene:


n
nC1
nC1 n
< n log
D log
< 1:
nC1
n
n
Dpto. de Análisis Matemático

Universidad de Granada

Ejercicios de Análisis Matemático

2

Por el principio de las sucesiones encajadas, deducimos que log

n
tomandoexponenciales, que e D lKm 1 C 1 .
ı
n



nC1
n

n

! 1, lo que implica,

©

4. Calcula los límites de las siguientes sucesiones expresándolas como sumas de Riemann.
1˛ C 2˛ C    C n˛
; .˛ > 0/
n˛C1
nC1
nC2
nCn
e/ xn D 2
C 2
CC 2
n C1
n C4
n C n2

1=n
.2n/!
i / xn D
n!nn
a/ xn D

Solución.
 ˛
1 Pn
k
a) Tenemos que xn D
que es una suma de Riemannde la función f .x/ D x ˛
n kD1 n
para la partición del intervalo Œ0; 1 dada por los puntos xk D k (0 6 k 6 n). Pues, claramente,
n
n
X
se tiene que xn D
f .xk /.xk xk 1 /. Como ˛ > 0, la función f es integrable en Œ0; 1, y
kD1

deducimos que:

1

lKm fxn g D
ı

n!1

e) Podemos escribir:
xn D

0

x ˛ dx D

1
:
˛C1

n
n
X nCk
1X
D
n2 C k 2
n

1C k
n
 2
kkD1 1 C
n

kD1

1Cx
que es una suma de Riemann de la función f .x/ D 1Cx 2 para la partición del intervalo Œ0; 1 dada

por los puntos xk D
deducimos que:

k
n

(0 6 k 6 n). Como la función f es integrable en Œ0; 1 y .Pn / D
1

lKm fxn g D
ı

n!1

0

1Cx
dx D
1 C x2

1

0

1
dx C
1 C x2

p
1

D arc tg 1 C log 2 D C log 2:
2
4

1

0

1
n

!...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Integrales
  • INTEGRALES
  • Integral
  • Integrales
  • Integrales
  • integrales
  • La Integral
  • Integrales

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS