Las Estrellas
Descripción
Son objetos de masas enormes comprendidas entre 0,08[1] y 120-200[2] masas solares (Msol). Los objetos de masa inferior se llaman enanas marrones mientras que las estrellas de masa superior parecen no existir debido al límite de Eddington. Su luminosidad también tiene un rango muy amplio que abarca entre una diezmilésima parte y tres millones de veces la luminosidaddel Sol. El radio, la temperatura y la luminosidad de una estrella se pueden relacionar mediante su aproximación a cuerpo negro con la siguiente ecuación:
Donde L es la luminosidad, la constante de Stefan-Boltzmann, R el radio y Te la temperatura efectiva.
Constante de Stefan-Boltzmann: constante física que relaciona temperatura absoluta y energía. Se llama así por el físico austriaco LudwigBoltzmann, quien hizo importantes contribuciones a la teoría de la mecánica estadística, en la que esta constante desempeña un papel fundamental.
Temperatura efectiva: es la temperatura de su superficie visible.
Ciclo de vida
Mientras las interacciones se producen en el núcleo, éstas sostienen el equilibrio hidrostático del cuerpo y la estrella mantiene su apariencia iridiscente predicha porNiels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se prolonga en el tiempo, los átomos de sus partes más externas comienzan a fusionarse. Esta región externa, al no estar comprimida al mismo nivel que el núcleo, aumenta su diámetro. Llegado cierto momento, dicho proceso se paraliza, para contraerse nuevamente hasta el estado enel que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta etapa el cuerpo entra en la fase de colapso, en la cual las fuerzas en pugna —la gravedad y las interacciones de fusión de las capas externas— producen una constantevariación del diámetro, en la que acaban venciendo las fuerzas gravitatorias cuando las capas más externas no tienen ya elementos que fusionar.
Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de su masa total, la fusión entrará en un proceso degenerativo al colapsar por vencer a las fuerzas descritas en el principiode exclusión de Pauli, produciéndose una supernova.
Agrupaciones y distribución estelar
Estrellas ligadas
Las estrellas pueden estar ligadas gravitacionalmente unas con otras formando sistemas estelares binarios, ternarios o agrupaciones aún mayores. Una fracción alta de las estrellas del disco de la Vía Láctea pertenecen a sistemas binarios; el porcentaje es cercano al 90% para estrellasmasivas[5] y desciende hasta el 50% para estrellas de masa baja.[6] Otras veces, las estrellas se agrupan en grandes concentraciones que van desde las decenas hasta los centenares de miles o incluso millones de estrellas, formando los denominados cúmulos estelares. Estos cúmulos pueden deberse a variaciones en el campo gravitacional galáctico o bien pueden ser fruto de brotes de formación estelar (sesabe que la mayoría de las estrellas se forman en grupos). Tradicionalmente, en la Vía Láctea se distinguían dos tipos: (1) los cúmulos globulares, que son viejos, se encuentran en el halo y contienen de centenares de miles a millones de estrellas y (2) los cúmulos abiertos, que son de formación reciente, se encuentran en el disco y contienen un número menor de estrellas. Desde finales del sigloXX esa clasificación se ha cuestionado al descubrirse en el disco de la Vía Láctea cúmulos estelares jóvenes como Westerlund 1 o NGC 3603 con un número de estrellas similar al de un cúmulo globular. Esos cúmulos masivos y jóvenes se encuentran también en otras galaxias; algunos ejemplos son 30 Doradus en la Gran Nube de Magallanes y NGC 4214-I-A en NGC 4214.
Estrellas aisladas
No todas las...
Regístrate para leer el documento completo.