Plate Load Test
Initial Soil Conditions
INDICES Origin Geologic Age Grain Sizes Mineralogy Plasticity Shape Sphericity Roundness Angularity Void ratio limits
(emax and emin)
Zw Z
STATE Void Ratio, e0 Unit Weight, γs Relative Density, DR Vertical Stress, σvo Hydrostatic, uo Saturation, Sr Geostatic K0 = σho’/σvo’ Stiffness, G0 = Gmax Cementation Fabric, void indexIvo Intact or Fissured
Soil Element A
Soil Parameters and Properties
CONDUCTIVITY
Hydraulic: kv, kh Thermal: ke Electrical: Ω, ζ Chemical: Df
STIFFNESS
Stiffness: G0 = Gmax Shear Modulus, G Bulk Modulus, K’ Poisson’s Ratio, ν Effects of Anisotropy Nonlinearity
COMPRESSIBILITY
Recompression, Cr Preconsolidation, σvy’ Consolidation, cv Virgin Compression, Cc Swelling index, CsSTRENGTH
Drained and Undrained Peak (su, c’, φ’) Post-peak Remoulded/Softened/CS Residual Cyclic Behaviour
RHEOLOGICAL
Creep, Cα Strain rate, δε/δt Age (t)
Site Characterisation Methods
•
Drilling & Sampling
• •
Soil Borings Rock Coring Standard Penetration (SPT) Cone Penetration (CPT + CPTu) Flat Plate Dilatometer (DMT) Pressuremeter (PMT) Vane Shear (VST) Mechanical Waves (P-, S-,R-waves) Electromagnetic (radar, resistivity, dielectric)
•
In Situ Tests
• • • • •
•
Geophysical Methods
• •
Sampling & Lab Testing of Clays and Silts
φ’
High-Quality Sampling
OCR
Some In Situ Tests
Standard Penetration Test (SPT)
SPT hammer
Anvil
63.5-kg Drop Hammer Repeatedly Falling 0.76 m
63.5 kg mass
Count number of blows to drive sampler frompenetration of 150 to 450 mm
760 mm
Split-Barrel (Drive) Sampler: O.D. = 50 mm I.D. = 35 mm L = 760 mm
Corrections are normally applied to the SPT blow count to account for differences in: • energy imparted during the test • the stress level at the test depth
SPT (unchanged since 1902 !)
SPT split spoon
Measured N-value (blows/foot)
Cone Penetration Test (CPT)
35.7 mmdiameter = 1000 mm2 area pushed in at 20 mm/s
CPT Setup
Smaller CPT Trucks (anchors/dead-weight)
Cones: Pore Pressure and Resistivity Measurement
Pore pressure transducer on face of cone
Various types of cones with pore pressure transducers
Resistivity module
Various types of cones with pore pressure transducers and additional resistivity module
CPT Results
0 5
Depth (m)10 15 20 25 30
Piezocone Test (CPTU)
CPT/CPTU Interpretation - Soil Type
Revised classification Chart
Q= [(qc – σv0)/pref ] [ pref /σ’v0]n F = fs/ (qc – σvo)
n = fn. (Q, F)
Typical CPTU data in Perth CBD (Site A)
qcnet (MPa) 0 0 10 20 30 0 0 1 Fr (%) 2 3 4 5 -200 0 0 u2 (kPa) 200 400 600 -0.2 0 Bq 0 0.2
2
2
2
2
4
4
4
4____________________________________________________________
________
6 6 6 6
Depth (m)
____________________________________________________________
________
10 10 10 10
8
8
8
8
12
12
12
12
14 14 14 14 ____________________________________________________________
________ 16 16 16 16
18
18
18 u0
18
20
20
20
20
Classification (3 layers at Site A)
1000 10007 8&9 7
100 Q = qcnet / 'v0
6 5
Q = qcnet / 'v0
100
6
5
10
4
10
Upper sand:2-5.5m 3 Upper clay: 6-9m 1 Lower clay:15-18m 2
4 3 2
0 0.1 0.2 0.3 0.4
1 0.1 1 Fr (%) 10
1 -0.1
Bq = Δu2/qcnet
“Upper clay” : Sandy silt ; “Lower clay”: Clayey silt
SCPTU profiles
Tip Resistance Sleeve Friction Porewater Pressure Friction Ratio Shear Wave Velocity
qT(MPa)
0 0 5 10 15 0
fs (kPa)
200 400 600 0
u2 (kPa)
500 1000 1500 0 2
FR (%)
4 6 8 10 0 100
Vs (m/s)
200 300 400 500
5
10
Depth (m)
15
20
25
30
Cone Details
Soil Stiffness
τ τmax Typical shear behaviour
0.5τmax G50 Gmax
γ
3000
Typical strain ranges
2000 Eu/su 1000
Retaining walls Foundations
0 0.001
0.01
0.1 Axial strain (%)
1...
Regístrate para leer el documento completo.