Teorema
Significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Supóngase que se tiene una función continua y = f(x) yque su representación gráfica es una curva. Entonces, para cada valor de x tiene sentido de manera intuitiva pensar que existe una función A(x) que representa el área bajo la curva entre 0 y x aún sinconocer su expresión.
Supóngase ahora que se quiere calcular el área bajo la curva entre x y x+h. Se podría hacer hallando el área entre 0 y x+h y luego restando el área entre 0 y x. En resumen, elárea de esta especie de "loncha" sería A(x+h) − A(x).
Otra manera de estimar esta misma área es multiplicar h por f(x) para hallar el área de un rectángulo que coincide aproximadamente con la"loncha". Nótese que la aproximación al área buscada es más precisa cuanto más pequeño sea el valor de h. Por lo tanto, se puede decir que A(x+h) − A(x) es aproximadamente igual a f(x) · h, y que la precisiónde esta aproximación mejora al disminuir el valor de h. En otras palabras, ƒ(x)·h ≈ A(x+h) − A(x), convirtiéndose esta aproximación en igualdad cuando h tiende a 0 como límite. Dividiendo los doslados de la ecuación por h se obtiene
Cuando h tiende a 0, se observa que el miembro derecho de la ecuación es sencillamente la derivada A’(x) de la función A(x) y que el miembro izquierdo se queda enƒ(x) al ya no estar h presente.
Se muestra entonces de manera informal que ƒ(x) = A’(x), es decir, que la derivada de la función de área A(x) es en realidad la función ƒ(x). Dicho de otra forma, lafunción de área A(x) es la antiderivada de la función original. Lo que se ha mostrado es que, intuitivamente, calcular la derivada de una función y "hallar el área" bajo su curva son operaciones"inversas", es decir el objetivo del teorema fundamental del cálculo integral.
Primer teorema fundamental del cálculo
Dada una función f integrable sobre el intervalo [a,b], definimos F sobre [a,b]...
Regístrate para leer el documento completo.