Venezuela
Se denomina sección cónica a la curva intersección de un cono con un plano que no pasa por su vértice.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
* β < α : Hipérbola (azul)
* β = α : Parábola (verde)
* β > α : Elipse(morado)
* β = 90º : Círculo (rojo)
Si el plano pasa por el vértice del cono, como fácilmente se puede comprobar:
* Cuando β > α la intersección es un único punto (el vértice).
* Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).
* Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice. El ángulo formadopor las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).
Estas secciones degeneradas no se consideran secciones cónicas.
Se denomina sección cónica (o simplemente cónica) a la intersección de un cono circular recto de dos hojas con un plano que no pasa por su vértice. Se clasifican en tres tipos: elipse, parábola ehipérbola.
Etimología
La primera definición conocida de sección cónica surge en la Antigua Grecia, cerca del año 350 (Menæchmus) donde las definieron como secciones «de un cono circular recto».[1] Los nombres de hipérbola, parábola y elipse se deben a Apolonio de Perge. Actualmente, las secciones cónicas pueden definirse de varias maneras; estas definiciones provienen de las diversas ramas de lamatemática: como la geometría analítica, la geometría proyectiva, etc.
Tipos
Perspectiva de las secciones cónicas.
Las tres secciones cónicas en el plano.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
* β < α : Hipérbola (naranja)
* β = α : Parábola(azulado)
* β > α : Elipse (verde)
* β = 90º: Circunferencia (un caso particular de elipse) (rojo)
Si el plano pasa por el vértice del cono, se puede comprobar que:
* Cuando β > α la intersección es un único punto (el vértice).
* Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).
* Cuando β < α la intersección vendrá dadapor dos rectas que se cortan en el vértice.
* cuando β = 90º El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).
Expresión algebraica
Partiendo de una circunferencia (e=0), al aumentar la excentricidad se obtienen elipses, parábolas e hipérbolas.
En coordenadas cartesianas, las cónicas seexpresan en forma algebraica mediante ecuaciones cuadráticas de dos variables (x,y) de la forma:
en la que, en función de los valores de los parámetros, se tendrá:
h² > ab: hipérbola.
h² = ab: parábola.
h² < ab: elipse.
a = b y h = 0: circunferencia .
[editar] Características
La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijosllamados focos es constante.
Además de los focos F y F´, en una elipse destacan los siguientes elementos:
* Centro, O
* Eje mayor, AA´
* Eje menor, BB´
* Distancia focal, OF
La elipse con centro (0, 0) tiene la siguiente expresión algebraica:
La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, esconstante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:
* Centro, O
* Vértices, A y A
* Distancia...
Regístrate para leer el documento completo.