Ananlisis de Problemas

Solo disponible en BuenasTareas
  • Páginas : 7 (1685 palabras )
  • Descarga(s) : 0
  • Publicado : 11 de junio de 2014
Leer documento completo
Vista previa del texto
Estudio de Fuerzas y Palancas

Universidad Santiago de Chile. Departamento de Física. Laboratorio para ingeniería.
Codigo10103-1-L-25. Horario: (jueves a las 8:00am). Profesor: Francisco Martínez Catalán

Araceli Flores¹, Daniel Hauri² e Isidora Poblete³. Esteban Huerta⁴
¹araceli.flores@usach.cl, ²daniel.hauri@usach.cl , ³isidora.poblete@usach.cl , esteban.huerta@usach.cl⁴

Resumen.De dos diagramas de cuerpo libre con presencia de polea y en el segundo una palanca, del cual se consideran las fuerzas, pesos, torques y tensiones con el fin de conseguir la ecuación del equilibrio respectiva a cada experiencia.

Introducción.
Tan importante es cómo entender el por qué los cuerpos aceleran en respuesta a las fuerzas que actúan sobre ellos es el de asegurarnos de que estosno aceleren. Cualquier edificio, desde los rascacielos de muchos pisos hasta las casas más sencillas, deben diseñarse de modo que no se derrumbe. Análogamente sucede con un puente colgante, una escalera re-cargada sobre una pared o una grúa que levanta un gran bloque de concreto.
Es por esto que el cuerpo debe modelarse como una partícula en equilibrio. Definimos el equilibrio de un cuerpo comola nula aceleración de este, es decir, es un marco de referencia inercial, si la sumatoria vectorial de todas las fuerzas que actúan sobre él es nula. Esta se denomina la primera condición de equilibrio o condición de equilibrio traslacional.

∑▒F ⃗ =0
[1]
Ecuación 1 – “Sumatoria de todas las fuerzas para que el sistema este en equilibrio.”

Donde al ser F ⃗ un vectorpodemos escribir expresión anterior en relación a sus componentes.
∑▒(Fx) ⃗ =0 ∑▒(Fy) ⃗ =0
[2]
Ecuación 2 – “Sumatoria de las componentes de una fuerza.”
Una segunda condición para que el cuerpo se encuentre en equilibrio, es que este no gire. Esta condición se basa en la dinámica del movimiento rotacional.
Si observamos la primera Ley de Newton. Siun cuerpo rígido, en un marco de referencia inercial, no está girando en torno a un punto es porque tiene un momento angular cero alrededor de ese punto (L ⃗ = 0). Lo mencionado anteriormente significa que la sumatoria de los torques debidos a todas las fuerzas externas que actúan sobre el cuerpo deben ser igual acero.
Esta segunda condición recibe el nombre de equilibrio rotacional; y puedeexpresarse matemáticamente como:
∑▒τ ⃗ =0
[3]
Ecuación 3 – “Sumatoria de los torques en un sistema.”


Método Experimental n°1
Materiales:
1. Hilo de algodón.
2. Pizza.
3. Poleas Magnéticas.
4. Balanza Digital.
5. Transportador.
6. Cuerpos de diferentes masas.
7. Pizarra.


En esta experiencia se busca corroborar el equilibrio traslacional de un sistema en equilibrio,representado en la siguiente figura:

Figura 1 – “Sistema de equilibrio, en el cual un hilo pasa por una polea sosteniendo una masa”

Se utilizo una balanza para medir las masas de todos los cuerpos utilizados en el sistema de equilibrio, representada en la siguiente figura:














Figura 2 – "Balanza Digital, utilizada para masar los cuerpos. Posee una sensibilidad de0,01 x 10⁻⁴ [kg]".




Para la experiencia se eligen 3 masas las cuales son masadas en una balanza digital, cuya sensibilidad es de 0,01 x 10⁻⁴ [kg]. Dichas masas son distribuidas en distintas posiciones, siguiendo el modelo del sistema propuesto para la actividad. Una vez que es posible apreciar visualmente el estado de equilibrio procedemos realizar la medida de los ángulos formado entreel centro de nuestro sistema de referencia y el eje x.
Estos están basados en que el equilibrio traslacional, por lo tanto se cumple que:
∑▒F ⃗ =0
Donde se puede escribir la expresión anteriormente mencionada como:
∑▒(Fx) ⃗ =0 ∑▒(Fy) ⃗ =0

Recordemos que las componentes de un vector pueden calcularse por medio de razones trigonométricas más...