Torsión

Páginas: 8 (1766 palabras) Publicado: 31 de marzo de 2011
ENSAYOS INDUSTRIALES
Dpto. de Ingeniería Mecánica y Naval
Facultad de Ingeniería
Universidad de Buenos Aires

TORSION

Luis A. de Vedia
Hernán Svoboda

Buenos Aires
2001

6. TEORIA INGENIERIL DE TORSION DE EJES Y TUBOS DE PAREDES DELGADAS.6.1 Torsión de un eje de sección circular.

Sea un eje de sección circular de radio R y longitud L sometida a un momento torsor T como se muestra en la Fig. 6.1.

B O
Fig. 6. 1
A

Asumiremos que secciones planas antes de la deformación permanecen planas después de la deformación, lo que severifica experimentalmente para ejes de sección circular pero que no es cierto en general para otras secciones.

Una fibra tal como la OA adoptará luego de la deformación la posición
OB, de modo que

siendo
γ = tgα ≅ α

α = AB L
= Rθ
L

de modo que

γ = Rθ
L

Si se asume además que un diámetro del eje antes de la deformación, locontinua siendo luego de la misma, puede escribirse

rθ γ r = L

donde r es la distancia al centro del eje y γr representa la deformación angular en esa posición.

La condición de equilibrio exige

T = zR τ rdA = zR τ

dr 2 idA
o o r

Ahora bien, como

resulta

τ r = Gγ r

= Grθ
L
τ r = Gθ
r L

= Cte.

de modo que

T = τ r

zR r 2dA = τ r J
r 0 r

donde J es el momento de inercia geométrico polar de la sección.

Resulta entonces

donde

Tr
τ r = J

(6. 1)

J = πD
32
Obsérvese que dado que
G = τ r
γ r

= TR / J Rθ / L= TL Jθ

resulta

θ = TL GJ

= T
GJ / L

(6. 2)

donde GJ/L es la Rigidez Torsional del eje.

Resulta ilustrativo extender los resultados anteriores al caso de un eje de sección circular levemente variable como se muestra en la Fig. 6.2.

Fig. 6. 2

Podemos escribir

r = a +

bb − agx
L
Por ser la sección levemente variable, podemos aplicar la 6.2 alelemento de longitud dx y radio r para el que obtenemos

J = π D

= π r
π L
= a +
b b − ag x O4
32 2 2 L

de modo que

dθ =

π L

Tdx
bb − agx O4
G 2 NMa + L

Integrando obtenemos

L

θ = 2T zL

dx
b g

= 2T

GF−

1JIGF

L JI M 1 P =
π 0 L
− O4
π H 3 KH − K 3
G ba x G
a +
L
NF (b −a)x KI Q

2TL
=
FG−
1 1 I
3 3

(6. 3)
3Gπ bb − ag H
b a K

6.2 Tubos de paredes delgadas.

Consideremos el caso de un tubo largo de paredes delgadas de sección con forma arbitraria, como se muestra en la Fig. 6.3.

Fig. 6. 3
A diferencia de la seccióncircular considerada anteriormente, la sección ahora considerada puede alabearse. Asumimos no obstante que no habiendo restricción para este alabeo, no hay generación de tensiones de tracción o compresión en la dirección longitudinal.

Aislando un elemento de volumen, dado que el espesor es pequeño, puede considerarse razonablemente que las tensiones tangenciales son constantes en el espesor y queadoptan la dirección tangente a la línea media del contorno, como se muestra en la figura.

El equilibrio en la dirección tangencial exige

F1 = F2

mientras que el equilibrio en la dirección longitudinal requiere

F3 = F4

Ahora bien, como

F3 = τ 3t1dx ,

F4 = τ 4t2dx

surge inmediatamente que

τ 3t1

=...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Torsion
  • TORSION
  • Torsión
  • Torsion
  • Torsion
  • torsion
  • torsion
  • torsiones

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS