Ttey

Solo disponible en BuenasTareas
  • Páginas : 5 (1231 palabras )
  • Descarga(s) : 0
  • Publicado : 11 de marzo de 2010
Leer documento completo
Vista previa del texto
Factorización Antes de iniciar con el tema de factorización es necesario definir uno de los conceptos que se utilizarán con mucha frecuencia. Factor común.− se llama así al factor que aparece en cada uno de los términos de un polinomio. Ejemplo 1: 2ax2−4ay+8a2x Analicemos término por término: El primer término podemos expresarlo como: 2axx El segundo término podemos expresarlo como: −2*2ayFinalmente el tercer término podemos expresarlo como: 4*2aax Como podemos observar en los tres términos que componen el polinomio tenemos el término 2a, a este término se le conoce como factor común. De esta forma 2ax2−4ay+8a2x, puede expresarse como: 2a (x2−2y+4ax) No existen fórmulas para la factorización, pero al ser un proceso inverso a la multiplicación, la experiencia en las fórmulas revisadasanteriormente nos permitirá reconocer cuando una expresión algebraica es el producto resultante de factores conocidos. Decimos que factorizamos completamente cuando llegamos a una expresión en que cualquier factorización posterior produce números fraccionarios. Ejemplo 2: Factorizar 2x+6y. 2x+6y podemos expresarlo como 2*x+2*3*y En este caso los coeficientes son múltiplos de 2; por lo tanto podemostomar como factor común a 2, ya que aparece en ambos términos del polinomio. 2x+6y=2(x+3y) Si ahora tomamos a 3 como factor común tenderemos (2)(3)

; quedando una fracción por lo que la factorización ya no es completa. Ejemplo 3: Descomponer en factores a(x+2y)−3(x+2y) En este ejemplo el factor común en (x+2y), ya que aparece en los términos que componen el polinomio, por tanto(x+2y)(a−3)=a(x+2y)−3(x+2y). 1

Factorización de un binomio cuadrado perfecto Para saber si el polinomio que tenemos lo podemos factorizar como binomio cuadrado perfecto, debemos basarnos en la definición que se dio en el tema anterior. Ejemplo 1: Factorizar a2−4ab+4b2 Obtenemos la raíz cuadrada del primer término: Raíz cuadrada del tercer término: Doble producto de las raíces del primer y tercer término:(2)(a)(2b)= 4ab Como podemos observar el doble producto de la multiplicación de las raíces es igual al segundo término; por lo que se trata de un binomio cuadrado perfecto. Por lo tanto a2−4ab+4b2 podemos expresarlo como (a−2b)2. Ejemplo 2: Factorizar 36x2−18xy4+4y8 Obtenemos la raíz cuadrada del primer término: Raíz cuadrada del tercer término:

Doble producto de las raíces del primer y tercertérmino: (2)(6x)(2y4)=24y4x Como podemos observar el polinomio no es un binomio cuadrado perfecto, ya que el segundo término no es igual. Diferencia de cuadrados Regla: Se extrae la raíz cuadrada al minuendo y al sustraendo y se multiplica la suma de estas raíces por la diferencia de la raíz del minuendo y la del sustraendo. Ejemplo 1: Factorizar 1−a2 Realizando los pasos que se mencionan en la regla,tenemos: Raíz cuadrada del minuendo: Raíz cuadrada del sustraendo: Multiplicamos la suma de estas raíces (1+a) por la diferencia de la raíz del minuendo y del sustraendo (1−a). Por lo tanto: 1−a2=(1+a)(1−a)

2

Ejemplo 2: Factorizar 16x2−25y4 Raíz cuadrada del minuendo: Raíz cuadrada del sustraendo:

Multiplicamos la suma de estas raíces (4x+5y2) por la diferencia de la raíz del minuendo y delsustraendo (4x−5y2). Por lo tanto: 16x2−25y4 =(4x+5y2)( 4x−5y2)

Factorización de trinomios Recordemos que el cuadrado de la diferencia de dos cantidades es de la forma (a−b)2 =(a−b)(a−b)=a2−2ab+b2, para poder factorizar un polinomio que presenta esta forma, veamos el siguiente ejemplo. Ejemplo 1: Factorizar x2+2x−15 En primer lugar sabemos que vamos a tener dos binomios, en el primer de ellosse pone signo positivo, porque 2x tiene signo +. En el segundo se pone signo negativo, porque multiplicando el signo de +2x por el signo de −15, tenemos que + por − da −. Una vez hecha esta aclaración, realizamos los siguientes pasos: Obtenemos la raíz cuadrada del primer término: Como los binomios tienen signo distinto, buscamos dos números cuya diferencia sea 2 y cuyo producto sea 15...
tracking img