ALGEBRA LINEAL
Definición: Las transformaciones lineales son las funciones y tratan sobre K-espacios vectoriales que son compatibles con la estructura (es
decir, con la operación y la acción) de estos espacios.
Aquí se presentan las funciones entre espacios vectoriales que preservan las cualidades de los
espacios vectoriales. Es decir, de funciones quepreservan la suma y la multiplicación por escalares.
Nosotros usaremos el concepto de la función para darle un tratamiento a los sistemas de ecuaciones lineales. La restricción que haremos sera sobre el tipo de funciones: solo estaremos interesados en funciones que preserven las operaciones en el espacio vectorial. Este tipo de funciones serán llamadas funciones lineales. Primeramente las definiremos,veremos algunas propiedades generales y después veremos como se aplican estos resultados a sistemas de ecuaciones.
Sean V y W dos espacios vectoriales posiblemente iguales.
Una transformación lineal o mapeo lineal de V a W es una función
T : V → W tal que para todos los vectores u y v de V y cualquier escalar c:
a) T (u + v) = T (u) + T (v)
b) T (c u) = c T (u)
Demuestre quela transformación T : R2 →R2 definida por
es lineal.
Entonces
Por otro lado, para todo escalar c,
Como se cumplen las dos condiciones:
T es lineal.
Una transformación lineal preserva combinaciones lineales. Veremos que, debido aesto, una transformación lineal queda unívoca-mente determinada por los valores que toma en los elementos de una base cualquiera de su dominio.
Teniendo en cuenta que las transformaciones lineales son funciones entre conjuntos, tiene sentido estudiar la validez de las propiedades usuales de funciones: inyectividad, suryectividad y biyectividad.
Las transformaciones lineales que verifican algunade estas propiedades reciben nombres particulares:
Definición 3.6 Sean V y W dos K-espacios vectoriales, y sea f : V → W una transformación lineal. Se dice que:
1. f es un monomorfismo si f es inyectiva.
2. f es un epimorfismo si f es suryectiva.
3. f es un isomorfismo si f es biyectiva.
En algunos casos, consideraremos transformaciones lineales de un K-espacio vectorial en s ́ı mismo:
Sea Vun K-espacio vectorial. Una transformación lineal f : V → V se llama un endomorfismo de V . Si f es un endomorfismo que es además un isomorfismo, entonces se dice que es un automorfismo.
5.2 Núcleo e imagen de una transformación lineal.
Transformaciones lineales: núcleo e imagen.
Teorema 1
Sea T: V S W una transformación lineal. Entonces para todos los vectores u, v, v1,
v2, . . . , vn en V ytodos los escalares a1, a2, . . . , an:
i. T(0) = 0
ii. T(u - v) = Tu - Tv
iii. T(a1v1 + a2v2 +. . .+ anvn) = a1Tv1 + a2Tv2 +. . .+ anTvn
Nota. En la parte i) el 0 de la izquierda es el vector cero en V; mientras que el 0 de la
derecha es el vector cero en W.
Teorema 2
Sea V un espacio vectorial de dimensión finita con base B = {v1, v2, . . . , vn}. Sean w1,
w2, . . . , wn vectores en W.Suponga que T1 y T2 son dos transformaciones lineales de V
en W tales que T1vi = T2vi = wi para i = 1, 2, . . . , n. Entonces para cualquier vector v ∈
V, T1v = T2v; es decir T1 = T2.
Ejemplo
Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces
i . El núcleo de T, denotado por un, está dado por
ii. Laimagen de T, denotado por Im T, esta dado por
Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.
Observación 2....
Regístrate para leer el documento completo.