Density Determination Of Liquids And Solids With A Spring.
1_ State and Dynamic study of the spring:
• STATE STUDY
The aim of this practice is obtain k. For this we are going to use the nextformula:
m g=k Δ x
The material needed to obtain the data is: • a spring • a base • different weights • holder • tape measure/ruler I weighed the holder and hold the spring on it. Then I choseeight different weights and I put one to one, measuring the elongation (I repeat this three times with each weight).
Weight(gr) 1ºresult 2ºresult 3ºresult ∆xmedia 50,25 51,25 52,25 53,25 54,25 9,87 2625,9 25,9 29,1 20,08 29,1 29,1 29,2 44,5 70,04 44,3 44,6 44,5 44,5 59,55 40,8 41 41,2 41 29,96 32,9 32,7 32,7 32,8 39,42 35,3 35,1 35,3 35,2 79,65 80,65 81,65 82,65 83,65
Units of length=cm Error inall the measures= 0,01 cm
1 0,9 f(x) = 3,2028079638x - 0,0144643621 0,8 R² = 0,9986655998 Weight=m·g (N) 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0,05 0,1 0,15 0,2 ∆X (m)
State method
0,25
0,3Slope=k
k=3,20 N/m
• DYNAMIC STUDY
In this part the material for obtain the data is the same but I didn't use the ruler because in this part I measured the time needed for the spring to comeback to the initial point after applying a force. I measured the time that the spring took to do twenty oscillations:
Weight(gr) 50,25 9,87 20,08 70,04 59,55 29,96 39,42 79,65 Experiment 1ºresult 1ºtime2ºtime 3ºtime 4ºtime 5ºtime 6ºtime 7ºtime 8ºtime 2ºresult 17,4 5,53 12,6 19,9 18,3 14,7 15,9 20,9 17,4 5,72 12,4 19,5 17,9 14,7 16,1 20,8 3ºresult ∆Dmedia Nºoscilation 17,3 17,4 20 5,35 5,53 10 12,712,6 20 19,8 19,7 20 18,2 18,1 20 14,7 14,7 20 15,9 15,9 20 20,4 20,7 20
Units of time=seconds Error in all the measures= 0.01 s I divided time between number of oscillations, and that's theperiod:
1ºtime 2ºtime 3ºtime 4ºtime 5ºtime 6ºtime 7ºtime 8ºtime 0,8685 0,5533333333 0,6283333333 0,9865 0,908 0,7326666667 0,8005 1,0365
Dynamic method
1,2 f(x) = 11,0352827178x + 0,1930344738 1 R²...
Regístrate para leer el documento completo.