Documento
4 SEMESTRE
GRUPO: A
ESPECIALIDAS: MECATRONICA
3 PARCIAL
DOCENTE: ING. SAMUEL SANCHEZ ALBA
Calculo: aplicación de la derivada
Índice
Portada………………………………………………………..1
Índice……………………………………………………………2
Cuadro comparativo……………………………………..3
Introducción………………………………………………….4
Aplicación de la derivada……………………………5-7Aceleración……………………………………………………8
Reflexión……………………………………………………….9
Cuadro comparativo
INTRODUCCIÓN
El deseo de medir y de cuantificar el cambio, la variación, condujo en el siglo XVII hasta la noción de derivada.
El estudio de las operaciones con derivadas, junto con las integrales, constituye el cálculo infinitesimal. Los introductores fueron Newton y Leibnitz, de formaindependiente. Los conceptos son difíciles y hasta bien entrado el siglo XIX no se simplificaron. A ello contribuyó la aparición de una buena notación, que es la que usaremos. Las aplicaciones prácticas de esta teoría no dejan de aparecer.
*Aplicación de la derivada*
LA DERIVADA
INTRODUCCIÓN
El deseo de medir y de cuantificar el cambio, la variación, condujo en el siglo XVII hasta la noción de derivada.El estudio de las operaciones con derivadas, junto con las integrales, constituye el cálculo infinitesimal. Los introductores fueron Newton y Leibnitz, de forma independiente. Los conceptos son difíciles y hasta bien entrado el siglo XIX no se simplificaron. A ello contribuyó la aparición de una buena notación, que es la que usaremos. Las aplicaciones prácticas de esta teoría no dejan deaparecer.
1. Tasa de variación media
Incremento de una función
Sea y = f(x) y a un punto del dominio de f. Suponemos que a aumenta en h, pasando al valor a +h, entonces f pasa a valer
f(a +h), al valor h se le lama incremento de la variable, y a la diferencia entre f(a +h) y f(a) el incremento de la función.
Tasa de variación media
Llamamos tasa de variación media (o tasa media de cambio) T.V.M.,de la función y =f(x) en el intervalo
[a, b] al cociente entre los incrementos de la función y de la variable, es decir:
T.V.M. [a, b] =
Ejemplo 1. Halla la tasa de variación media de la función
f(x) =3-x2 en el intervalo [0,2]
Solución
T.V.M. [0, 2] =
Ejercicio 1. Calcular b para que la tasa de variación media de la función f(x) = ln(x+b) en el intervalo [0,2] valga ln2.
2. Tasa devariación instantánea. La derivada
Consideremos un valor h (que puede ser positivo o negativo).
La tasa de variación media en el intervalo [a, a +h] sería.
Nos interesa medir la tasa instantánea, es decir el cambio cuando la h tiende a cero, es decir:
A este valor se le llama la derivada de la función f en el punto a y se designa por , por lo tanto, la derivada de una función en un punto es ellímite de la tasa de variación media cuando el incremento de la variable tiende a 0.
=
Si f tiene derivada en el punto a se dice que f es derivable en a.
Observación 1. Si hacemos x =a +h , la derivada, en el punto a , también puede expresarse así:
Ejercicio 2. Hallar la derivada de la función f(x) = -x2 +4x el punto de abscisa x =1.
Observación 2. También se puede hablar de derivadaslaterales, f ’+ y f -’ (obligatorio que f sea continua) según se considere el límite para h>0 o h<0. Si existen los dos límites laterales y coinciden la función es derivable.
Ejemplo 2. Las derivadas laterales de la función en x =0 son 1 y –1.
Luego la función valor absoluto no es derivable en el 0.
Proposición. Toda. función derivable en un punto es continua en dicho punto.
Elrecíproco es falso.
Ejemplo 2. es continua en 0, pero no es derivable en 0.
Aplicación física de la derivada
Consideremos la función espacio E= E(t).
La tasa de variación media de la función espacio en el intervalo [t0, t] es: vM(t)=, que es lo que en Física llaman la velocidad media en ese intervalo de tiempo, si calculamos el límite cuando t tiende a t0, obtenemos la tasa instantánea, entonces:...
Regístrate para leer el documento completo.