Enzayo Matematicaz
PLANTEL COMERCIO Y FOMENTO INDUSTRIAL
ENSAYO “MANEJO DE ESPACIOS Y CANTIDADES”
DOCENTE: MARCO AURELIO CHAVEZ SOTO
MANEJO DE ESPACIOS Y CANTIDADES
INTRODUCCION
Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero, un decimalexacto, un decimal periódico o un decimal con infinitas cifras no periódicas.
En matemáticas, los números reales incluyen tanto a los números racionales (como: 31, 37/22, 25,4) como a los números irracionales aquellos que no se pueden expresar de manera fraccionaria y tienen infinitas cifras decimales no periódicas, tales como: Números reales son aquellos que poseen una expresión decimal.
Puedenser descritos de varias formas, aparentemente simples, pero estas carecen del rigor necesario para los propósitos formales de matemáticas.
Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento no se consideraba necesario el formalismo de la actualidad, usando expresiones como «pequeño», «límite», «se acerca» sin una definición precisa.Esto llevó finalmente a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa a la nueva matemática, la cual incluyó definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real.]
DESARROLLO
Operaciones con números reales (+, -, /, x)
Con números reales pueden realizarse todo tipo de operacionesbásicas con dos excepciones importantes:
1. No existen raíces de orden par (cuadradas, cuartas, sextas, etc.) de números negativos en números reales, razón por la que existe el conjunto de los números complejos donde estas operaciones sí están definidas.
2. No existe la división entre cero, pues carece de sentido dividir entre nada o entre nadie, es decir, no existe la operación de dividirentre nada.
Estas dos restricciones tienen repercusiones importantes en ramas más avanzadas de las matemáticas: existen asíntotas verticales en los lugares donde una función se indefine, es decir, en aquellos valores de la variable en los que se presenta una división entre cero, o no existe gráfica real en aquellos valores de la variable en que resulten números negativos para raíces de orden par,por mencionar un ejemplo de construcción de gráficas en geometría analítica.
La principal característica del conjunto de los números reales es la completitud, es decir, la existencia de límite para dada sucesión de Cauchy de números reales.
Los números reales miden cantidades continuas que se expresan con fracciones decimales que tienen una secuencia infinita de dígitos a la derecha de la comadecimal, como por ejemplo 324,8232. Frecuentemente también se subrepresentan con tres puntos consecutivos al final (324,823211247…), lo que significaría que aún faltan más dígitos decimales, pero que se consideran sin importancia.
Las medidas en las ciencias físicas son siempre una aproximación a un número real. No sólo es más conciso escribirlos con forma de fracción decimal (es decir, númerosracionales que pueden ser escritos como proporciones, con un denominador exacto) sino que, en cualquier caso, cunde íntegramente el concepto y significado del número real. En el análisis matemático los números reales son objeto principal de estudio. Puede decirse que los números reales son la herramienta de trabajo de las matemáticas de la continuidad, como el cálculo y el análisis matemático,mientras que los números enteros lo son de las matemáticas discretas, en las que está ausente la continuidad.
Se dice que un número real es recursivo si sus dígitos se pueden expresar por un algoritmo recursivo. Un número no-recursivo es aquél que es imposible de especificar explícitamente. Aun así, la escuela rusa de constructivismo supone que todos los números reales son recursivos.
Los...
Regístrate para leer el documento completo.