Páginas: 20 (4921 palabras) Publicado: 30 de noviembre de 2012
High Frequency Induction Heating

Induction heating is a non-contact heating process. It uses high frequency electricity to heat materials that are electrically conductive. Since it is non-contact, the heating process does not contaminate the material being heated. It is also very efficient since the heat is actually generated insidethe workpiece. This can be contrasted with other heating methods where heat is generated in a flame or heating element, which is then applied to the workpiece. For these reasons Induction Heating lends itself to some unique applications in industry.

How does Induction Heating work ?
A source of high frequency electricity is used to drive a large alternating current through a coil. This coil isknown as the work coil. See the picture opposite. The passage of current through this coil generates a very intense and rapidly changing magnetic field in the space within the work coil. The workpiece to be heated is placed within this intense alternating magnetic field. Depending on the nature of the workpiece material, a number of things happen...

1 of 14

2/19/05 2:21 PM

HighFrequency Induction Heating

The alternating magnetic field induces a current flow in the conductive workpiece. The arrangement of the work coil and the workpiece can be thought of as an electrical transformer. The work coil is like the primary where electrical energy is fed in, and the workpiece is like a single turn secondary that is short-circuited. Thiscauses tremendous currents to flow through the workpiece. These are known as eddy currents. In addition to this, the high frequency used in induction heating applications gives rise to a phenomenon called skin effect. This skin effect forces the alternating current to flow in a thin layer towards the surface of the workpiece. The skin effect increases the effective resistance of the metal to thepassage of the large current. Therefore it greatly increases the heating effect caused by the current induced in the workpiece. (Although the heating due to eddy currents is desirable in this application, it is interesting to note that transformer manufacturers go to great lengths to avoid this phenomenon in their transformers. Laminated transformer cores, powdered iron cores and ferrites are allused to prevent eddy currents from flowing inside transformer cores. Inside a transformer the passage of eddy currents is highly undesirable because it causes heating of the magnetic core and represents power that is wasted.)

And for Ferrous metals ?
For ferrous metals like iron and some types of steel, there is an additional heating mechanism that takes place at the same time as the eddycurrents mentioned above. The intense alternating magnetic field inside the work coil repeatedly magnetises and de-magnetises the iron crystals. This rapid flipping of the magnetic domains causes considerable friction and heating inside the material. Heating due to this mechanism is known as Hysteresis loss, and is greatest for materials that have a large area inside their B-H curve. This can be alarge contributing factor to the heat generated during induction heating, but only takes place inside ferrous materials. For this reason ferrous materials lend themselves more easily to heating by induction than non-ferrous materials. It is interesting to note that steel looses its magnetic materials when heated above approximately 700°C. This temperature is known as the Curie temperature. This meansthat above 700°C there can be no heating of the material due to hysteresis losses. Any further heating of the material must be due to induced eddy currents alone. This makes heating steel above 700°C more of a challenge for the induction heating systems. The fact that copper and Aluminium are both non-magnetic and very good electrical conductors, can also make these materials a challenge to...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Induccion
  • inducción
  • Induccion
  • Induccion
  • Inducción
  • induccion
  • induccion
  • Inducción

Conviértase en miembro formal de Buenas Tareas