Matematicas

Páginas: 8 (1889 palabras) Publicado: 4 de mayo de 2012
Mínimo común múltiplo
El mínimo común múltiplo de dos o más números naturales es el menor número natural que es múltiplo de todos ellos. Sólo se aplica con números naturales, es decir, no se usan decimales, números negativos o números complejos.
Cálculo del mínimo común múltiplo
Partiendo de dos o más números y por descomposición en factores primos, expresados como producto de factoresprimos, su mínimo común múltiplo será el resultado de multiplicar los factores comunes y no comunes elevados a la mayor potencia, por ejemplo el mcm de 72 y 50 será:
|
|
| |
|
|
Tomando los factores comunes y no comunes con su mayor exponente, tenemos que:

Conociendo el máximo común divisor de dos números, se puede calcular el mínimo común múltiplo de ellos, que será el producto deambos dividido entre su máximo común divisor.

Además podemos utilizar otro método en caso que hubiéramos calculado el máximo común divisor, en el cual se toman los factores comunes y no comunes con el mayor exponente y se multiplican: 2·2·3·5 = 60. El m.c.m. de 4, 5 y 6 es 60.
Propiedades básicas
Si el producto de dos números lo dividimos por su máximo común divisor el cociente es el mínimocomún múltiplo. A y B que descompuestos en números primos será A=(p1·p2)·p3·p4 y B=(p1·p2)·p5·p6 donde si m.c.d. es (p1·p2) y el producto de A·B=(p1·p2)·p3·p4·(p1·p2)·p5·p6 donde vemos que (p1·p2) esta repetido dos veces, luego si dividimos ese total por (p1·p2) tendremos el total menor que contiene a A y B siendo su m.c.m.
El mínimo común múltiplo de dos números, donde el menor divide al mayor,será el mayor. Es lógico ya que un múltiplo de ambos inferior al mayor sería imposible ya que no sería múltiplo del mayor. El mínimo común múltiplo de dos números primos es el total de su multiplicación. Esto es lógico ya que su máximo común divisor es 1. El mínimo común múltiplo de dos números compuestos será igual al cociente entre su producto y el m.c.d de ellos. Es evidente según la propiedad 1de este tema.
El máximo común divisor de varios números está incluido en el mínimo común múltiplo.
Aplicaciones del mínimo común múltiplo
Suma de fracciones
El m.c.m. se puede emplear para sumar fracciones de distinto denominador, tomando el m.c.m de los denominadores de las fracciones, y convirtiéndolas en fracciones equivalentes que puedan ser sumadas. Véase el siguiente ejemplo:

Parapoder efectuar la suma, primero se debe buscar el mínimo común múltiplo de los denominadores (6 y 33)
|
|
|
| |
|
|
|
luego el mínimo común múltiplo de 6 y 33 es:
que corresponde al número 66; ambas fracciones tendrán como denominador 66, ahora sólo hay que hallar a cada fracción su fracción equivalente, con denominador 66 y será posible la suma:

Expresiones algebraicasEl m.c.m. para dos expresiones algebraicas, corresponde a la expresión algebraica de menor coeficiente numérico y de menor grado que es divisible exactamente por cada una de las expresiones dadas. Esta teoría es de suma importancia para las fracciones y ecuaciones.[1]
De esta forma el m.c.m. de y es igualmente para y es .
Máximo común divisor
En matemáticas, se define el máximo común divisor(abreviado MCD) de dos o más números enteros al mayor número que los divide sin dejar resto. Por ejemplo, el MCD de 42 y 56 es 14. En efecto, y 3 y 4 son primos entre sí (no existe ningún número natural aparte de 1 que divida a la vez al 3 y al 4).
Cálculo del MCD
Los dos métodos más utilizados para el cálculo del máximo común divisor de dos números son:
Por descomposición en factores primosEl máximo común divisor de dos números puede calcularse determinando la descomposición en factores primos de los dos números y tomando los factores comunes elevados a la menor potencia, el producto de los cuales será el MCD. Por ejemplo, para calcular el máximo común divisor de 48 y de 60 obtenemos la factorización en factores primos
De las factorizaciones de 48 y 60:
|
|
| |
|
|...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Matematica
  • Matematica
  • Matematicas
  • Las matemáticas
  • Matematica
  • Matematicas
  • Matematica
  • Matematicas

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS