MECANICA CLASICA
H.CD. JUCHITÀN DE ZARAGOZA OAX; 22
22/06/15
INDICE
Unidad 2 Cinemática
2.1 Movimiento rectilíneo
2.2 Movimiento bajo aceleración constante
2.3 Movimiento circular
2.4 Movimiento curvilíneo general
Unidad 3 Dinámica de una Partícula
3.1 Concepto de partícula masa y fuerza
3.2 Leyes de Newton
3.3 Fricción
3.4 Momento angular
3.5 Fuerzas centrales
Unidad 4Trabajo y Energía
4.1 Concepto de trabajo
4.2 Potencia
4.3 Energía cinética
4.4 Energía potencial
4.5 Fuerzas conservativas
4.6 Principio de conservación de la energía
4.7 Conservación en el trabajo mecánico
4.8 Fuerzas no conservativas
Unidad 5 Sistemas de Partículas
5.1 Dinámica de un sistema de partículas
5.2 Movimiento del centro de masa
5.3 Teorema de conservación de la cantidad demovimiento
5.4 Teorema de conservación de la energía
5.5 Colisiones elásticas e inelásticas 5.6 Cuerpo rígido
UNIDAD II
CINEMATICA.
La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen,limitándose, esencialmente, al estudio de la trayectoria en función del tiempo. En la Cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia. La velocidad es el ritmo con que cambia la posición un cuerpo. La aceleración es el ritmo con que cambia su velocidad. La velocidad y la aceleración son las dos principales cantidades que describen cómocambia su posición en función del tiempo.
Existen 4 movimientos principales:
Movimiento rectilíneo.
Movimiento circular.
Movimiento curvilíneo.
Movimiento relativo.
2.1 MOVIMIENTO RECTILINEO.
En el movimiento rectilíneo, la trayectoria que describe el móvil es una línea recta. Eso permite un tratamiento más simple del problema, ya que al ser constante la dirección puede plantearse elproblema del movimiento mediante funciones escalares de una sola variable.
La ecuación básica del movimiento rectilíneo resulta ser:
Algunos tipos notables de movimiento rectilíneo son:
Movimiento rectilíneo uniforme: cuando la velocidad es constante.
Movimiento rectilíneo uniformemente acelerado: cuando la aceleración es constante.
Movimiento armónico unidimensional: oscilación sinusoidal alrededorde un punto de equilibrio.
Movimiento rectilíneo
Un sistema con movimiento rectilíneo se denomina autónomo si, es decir, si no existe dependencia explícita del tiempo. Para un sistema autónomo puede definirse una función energía que es una constante del movimiento. Además la ecuación del movimiento puede obtenerse mediante simples cuadraturas.
Ecuaciones del movimiento
La trayectoria de unapartícula es rectilínea cuando su aceleración es nula (sin serlo la velocidad) o cuando su aceleración no tiene componente normal a la velocidad. El movimiento rectilíneo es, pues, un caso particular del movimiento general en el espacio, pero debido a la abundancia de problemas y situaciones en que lo encontraremos, le dedicaremos una atención especial. Puesto que los vectores y están dirigidos alo largo de la trayectoria, será conveniente escoger el origen O sobre ella de modo que el vector de posición también estará situado sobre ella. Entonces, al ser paralelos entre sí todos los vectores que nos describen el movimiento de la partícula podemos prescindir de la notación vectorial.
Si tomamos el eje x en la dirección de la trayectoria y especificamos una cierta dirección como positiva,las ecuaciones de definición de la velocidad y de la aceleración se reducen a la componente x, o sea
De modo que, si conocemos podemos obtener la velocidad y la aceleración de la partícula, i.e., y, mediante dos derivaciones sucesivas. En algunos casos conoceremos y, entonces, por integración (y conociendo las condiciones iniciales y) podemos obtener y.
Podemos encontrar otra relación...
Regístrate para leer el documento completo.