Modelado de sistemas en espacio de estados
Outline
!
Previously
!
State Equation Representation of Dynamic Systems
Dr. Oishi Electrical and Computer Engineering University of British Columbia
Transferfunctions vs. state-space models
!
Today
! ! !
Linear algebra review State-space models --> transfer functions Closed-form solution to state-space models
!
Next time
! http://courses.ece.ubc.ca/360 eece360.ubc@gmail.com
EECE 360 v2.4
Transfer function --> state-space models
2
Chapter 3.1 - 3.5
1 EECE 360 v2.4
State-space models
!
The State DifferentialEquation
system matrix input matrix input vector
To get a state-space model:
! ! !
Start with a high-order differential equation Convert to a set of 1st order coupled differential equations Writein state-space form (A,B,C,D)
!
Now that we have a state-space model:
! !
State differential equation: Output equation:
output matrix
How does this relate to transfer functions? Howcan we find a transfer function from a given statespace model?
EECE 360 v2.4
3
EECE 360 v2.4
4
Key results: State-space to T.F.
!
Linear Algebra Review
!
With zero initialconditions: Y (s) = C(sI " A)"1 B + D U(s) With non-zero initial conditions:
!
X(s) = (sI " A)"1 BU(s) + (sI " A)"1 x(0) ! Y (s) = C(sI " A)"1 BU(s) + C(sI " A)"1 x(0) + DU(s)
!
! ! ! ** Need to find
(sI-A)-1.
5
To manipulate state-space representations of transfer functions, we need specific tools from linear algebra Matrix properties Matrix operations Matrix exponential...See Appendix E (online) from Dorf and Bishop.
EECE 360 v2.4 6
!
EECE 360 v2.4
Matrix Inversion
!
Summary: Linear Algebra Rev.
! !
Find A-1 such that Example:
!
Basicmatrix operations 2 x 2 matrix determinant
!
First find determinant Then find coefficients of the adjoint matrix (!11, …, !33)
!
2 x 2 matrix inverse
!
! !
**Know specific...
Regístrate para leer el documento completo.