Péndulo físico

Páginas: 7 (1510 palabras) Publicado: 26 de abril de 2011
Péndulo físico
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Un péndulo físico o péndulo compuesto es cualquier cuerpo rígido que pueda oscilar libremente en el campo gravitatorio alrededor de un eje horizontal fijo, que no pasa por su centro de masa.
Contenido[ocultar] * 1 Deducción del periodo * 2 Longitud reducida * 3 Puntos conjugados * 4 Demostración delTeorema de Huygens * 5 Referencias * 5.1 Bibliografía * 5.2 Véase también * 5.3 Referencias externas |
[editar] Deducción del periodo

Figura 1. Péndulo físico..
El péndulo físico es un sistema con un sólo grado de libertad; el correspondiente a la rotación alrededor del eje fijo ZZ′ (Figura 1). La posición del péndulo físico queda determinada, en cualquier instante, por elángulo θ que forma el plano determinado por el eje de rotación (ZZ′) y el centro de gravedad (G) del péndulo con el plano vertical que pasa por el eje de rotación.
Llamaremos a la distancia del centro de gravedad (G) del péndulo al eje de rotación ZZ′. Cuando el péndulo está desviado de su posición de equilibrio (estable) un ángulo , actúan sobre él dos fuerzas ( y ) cuyo momento resultante conrespecto al eje ZZ′ es un vector dirigido a lo largo del eje de rotación ZZ′, en el sentido negativo del mismo; i.e.,
(1)
Si es el momento de inercia del péndulo respecto al eje de suspensión ZZ′ y llamamos a la aceleración angular del mismo, el teorema del momento angular nos permite escribir la ecuación diferencial del movimiento de rotación del péndulo:
(2)
que podemos escribir en la forma
(3)que es una ecuación diferencial de segundo orden, del mismo tipo que la que encontramos para el péndulo simple.
En el caso de que la amplitud angular de las oscilaciones sea pequeña, podemos poner sen θ ≈ θ y la ecuación [3] adopta la forma
(4)
que corresponde a un movimiento armónico simple.
El periodo de las oscilaciones es
(5)
[editar] Longitud reducida
Es siempre posible encontrarun péndulo simple cuyo periodo sea igual al de un péndulo físico dado; tal péndulo simple recibe el nombre de péndulo simple equivalente y su longitud λ recibe el nombre de longitud reducida del péndulo físico. Utilizando la expresión del periodo del péndulo simple de longitud λ, podemos escribir
(6)
y, por lo tanto, tenemos que
(7)
Así, en lo que concierne al periodo de las oscilaciones deun péndulo físico, la masa del péndulo puede imaginarse concentrada en un punto (O′) cuya distancia al eje de suspensión es λ. Tal punto recibe el nombre de centro de oscilación. Todos los péndulos físicos que tengan la misma longitud reducida λ (respecto al eje de suspensión) oscilarán con la misma frecuencia; i.e., la frecuencia del péndulo simple equivalente, de longitud λ.
[editar] Puntosconjugados
Es conveniente sustituir en la expresión [5] el valor del momento de inercia IO del péndulo respecto al eje de suspensión ZZ′ por el momento de inercia IG del cuerpo respecto a un eje paralelo al anterior que pase por el centro de gravedad del péndulo. Así, sirviéndonos del teorema de Steiner, y llamando K al radio de giro del cuerpo respecto a este último eje, podemos escribir

Figura2. Representación gráfica de la dependencia del periodo con la distancia entre el centro de suspensión (O) y el de gravedad (G).
(8)
de modo que la expresión [5] se transforma en
(9)
En la Figura 2 hemos representado gráficamente la función T(h). Obtenemos una curva con dos ramas, que corresponden a colocar el eje de suspensión a un lado u otro del centro de gravedad del cuerpo. Como ambasramas son simétricas respecto al eje vertical, en la práctica bastará con hacer observaciones a un sólo lado del c.d.g.. Como queda bien manifiesto en la representación gráfica de Figura 2, la función T(h) dada por [9], el periodo de las oscilaciones presenta un valor mínimo para un cierto valor de la distancia h existente entre el centro de gravedad y el eje de suspensión. A partir de la...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Pendulo Fisico
  • Pendulo Fisico
  • Pendulo fisico
  • PENDULO FISICO
  • Pendulo Fisico
  • Pendulo Fisico
  • Pendulo Fisico
  • Péndulo Físico

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS