Polinomio

Páginas: 14 (3283 palabras) Publicado: 15 de febrero de 2016
 Polinomio


Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados usando sumas, restas y multiplicaciones, … pero no divisiones.

Los exponentes sólo pueden ser 0,1,2,3,... etc.

No puede tener un número infinito de términos.




Monomio
Saltar a: navegación, búsqueda

Monomio es una expresión algebraica en la que se utilizan exponentes naturales devariables literales que constan de un solo término (si hubiera + ó - seria binomio) , un número llamado coeficiente. Las únicas operaciones que aparecen entre las letras son el producto y la potencia de exponentes naturales. Se denomina polinomio a la suma de varios monomios. Un monomio es una clase de polinomio con un único término.

Ejemplos:

5x^4y^6 \; , \quad -x \; , \quad 0.5 y^8w^{12}
Enmatemáticas, un polinomio (del griego, πολυς polys 'muchos' y νόμος nómos 'regla, prescripción, distribución', a través del latín polynomius)1 2 3 es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así comotambién exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas.

Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como porejemplo: tiempo polinómico, etc.

Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química,economía y las ciencias sociales.

En áreas de las matemáticas aplicadas, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en álgebra abstracta y geometría algebraica.
Índice

1 Definición algebraica
1.1 Polinomios de una variable
1.2 Polinomios de varias variables
1.3 Grado de un polinomio
2 Operaciones con polinomios
3Funciones polinómicas
3.1 Ejemplos de funciones polinómicas
4 Factorización de polinomios
5 Historia
6 Véase también
7 Referencias
8 Enlaces externos

Definición algebraica
Polinomios de una variable

Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como \scriptstyle\mathbb{R} o \scriptstyle\mathbb{C}, en cuyo caso los coeficientes delpolinomio serán números) con an distinto de cero y n \in \mathbb{N}, entonces un polinomio, P_{}^{}, de grado n en la variable x es un objeto de la forma


P(x)_{}^{} = a_n x^n + a_{n-1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}.

Un polinomio P(x) \in K[x] no es más que una sucesión matemática finita \left\{{a_n}\right\}_n tal que a_n \in K.

Representado como:P(x)_{}^{}=a_0+a_1x+a_2x^2+...+a_nx^n

el polinomio se puede escribir más concisamente usando sumatorios como:


P(x) = \sum_{i = 0}^{n} a_{i} x^{i}.

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama el coeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, al polinomio se le llama mónico o normalizado.
Polinomios de variasvariables

Como ejemplo, de polinomios de dos variables desarrollando los binomios:

(2) \begin{cases} (x + y)^2 = x^2 + 2xy + y^2\\ (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\\ (x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \end{cases}

Para obtener la expansión de las potencias de una resta, basta con tomar -y en lugar de y en el caso anterior. La expresión (2) queda de la siguiente forma:...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • polinomios
  • polinomios
  • Polinomios
  • Polinomio
  • POLINOMIOS
  • Polinomio
  • Polinomios
  • Polinomio

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS