Quimica
La Termoquímica se encarga de estudiar las características de una reacción química, con respecto al
requerimiento o liberación energética implicada en la realización de los cambios estructurales
correspondientes.
Si la energía química de los reaccionantes es mayor que la de los productos se produce una
liberación de calor durante el desarrollo de la reacción, en casocontrario se necesita una adición de
calor. Esto hace que las reacciones se clasifiquen en exotérmicas o endotérmicas según que liberen
o requieran calor. La reacción entre hidróxido de sodio y ácido clorhídrico es altamente exotérmica,
mientras que la reacción de formación de óxido de magnesio a partir de oxígeno y magnesio es
endotérmica.
Leyes de la termoquimica
Primera ley de latermoquímica o Ley de Lavoisier-Laplace
“el calor necesario para descomponer una sustancia en sus elementos es igual, pero de sentido contrario, al que se necesita para volver a formarla”.
¿No es esto la ley de conservación de la energía?
Sí lo es, aplicado a un hecho concreto.
Y hablando de hechos concretos observemos el siguiente ejemplo:
H2 (g) + ½ O2 (g) → H2O (g) ∆H °f = -241,60 kJ/mol
Deacuerdo a esta primera ley podemos escribir
H2O (g) → H2 (g) + ½ O2(g) ∆H °-1 = +241,60 kJ/mol
Como U d. vio la reacción en el sentido de la formación de agua cursa con un ∆H°fnegativo mientras que en el sentido contrario lo hace con un ∆H ° positivo pero con igual valor absoluto (241,60 kJ/mol)
Segunda ley de la Termoquímica o Ley de Hess
En 1840 Hess postuló una ley absolutamente empírica: “elcalor liberado a presión o volumen constante en una reacción química dada es una constante independientemente del número de etapas en que se realiza el proceso químico.”
Analice el texto y vuelva a pensar si no estamos nuevamente en presencia de otra aplicación de la ley de conservación de la energía que es la primera ley de la termodinámica.
Veamos un ejemplo:
Tratemos de hallar el ∆H de lasiguiente reacción:
C (s) (grafito) + ½ O2(g) → CO (g) ∆H°r= ?
Esta es una reacción difícil de lograr en el laboratorio por lo que para hallar el
∆Hr aplicaremos la ley de Hess. Para ello acudamos a tablas en las que hallaremos
calculadas una cantidad muy importante de calores de reacción. Usaremos:
(1) C(s) (grafito) + O2 (g) → CO2 (g) ∆H°1 = -393,75 kJ/mol
(2) CO (g) + ½ O 2(g) → CO2(g)∆H°2 = -282,98 kJ/mol
¿Qué podemos hacer con estas reacciones?
En primer lugar apliquemos la primera ley a la reacción (2) que quedará:
(-2) CO2 (g) → CO (g) + ½ O2(g) ∆H°-2= 282,98 kJ/mol
Luego de acuerdo a la ley de Hess podemos sumar la reacción (1) y la reacción (-2)
(1) C (s) (grafito) + O 2(g) → CO2 (g)
(-2) CO2 (g) → CO (g) + ½ O2 (g)
C (s) (grafito) + O2 (g) + CO2 (g) → CO2 (g) + CO (g) + ½O2 (g)
Como se ve, hay especies en cantidades iguales a ambos lados como el CO2 (g) por lo que se pueden simplificar. Por otro lado hay 1 mol de O2 (g) a la izquierda y ½ mol de O2 (g) a la derecha por lo que balanceando queda ½ mol de O2 (g) a la izquierda.
La ecuación final será la que debíamos obtener:
C(s) (grafito) + ½ O2 (g) → CO (g)
¿Y el ∆H°r ?. Para su cálculo se procede de idénticamanera que la realizada arriba con las ecuaciones:
∆H°1 + ∆H°-2 = -393,75 kJ/m ol+282,98 kJ/mol = -463,01 kJ/mol
∆H°r = - 463,01 kJ/mol
Este mismo ejemplo se puede graficar por medio de un ciclo. Observe:
Gráfico número 21
A la letra r le corresponde un ∆H°r
Al número 1 le corresponde un ∆H°1
Al número -2 le corresponde un ∆H°-2
¿Qué otra operación sencilla podemos hacer con los caloresde reacción?
Supongamos tener una reacción química teórica como la que sigue:
aA + bB → cC + dD ∆H°1
ahora observe la misma pero con éstas variaciones, que surgen de usar como factor común el número de moles de A (nA= a)
a/a A + b/a B → c/a C + d/a D DH °2= ???
En este caso el ∆H°2 = ∆H°1/a o lo que es lo mismo:
∆H°1 = a ∆H°2
Entalpías de combustión:
Son los calores generados cuando...
Regístrate para leer el documento completo.