resolver ecuaciones en matlab

Páginas: 16 (3773 palabras) Publicado: 7 de abril de 2013
GUIA MATLAB
SOLUCION DE ECUACIONES NO LINEALES Y SISTEMAS
LINEALES
En este taller usaremos el programa MATLAB con el fin de resolver ecuaciones no lineales
y sistemas de ecuaciones lineales, de manera rápida y fácil. Se usarán tanto las herramientas
propias de MATLAB, como rutinas creadas por el usuario que nos llevarán paso a paso a la
solución de problemas.

PRIMERA PARTE: SOLUCIÓN DEECUACIONES NO LINEALES DE LA FORMA F (X ) = 0
Comencemos revizando unos fáciles ejemplos que nos mostrarán cuales son los pasos para resolver una ecuación no lineal empleando MATLAB, por medio de rutinas creadas por el usuario
y que con anterioridad deben ser creadas por usted en la forma como se explicó en la inducción
(y en la guía que aparece en la página del curso).

• Ejemplo: Determinevalores aproximados de las soluciones positivas de la ecuación
³x´
1
exp
− sin (x) = 0
2
3
Solución: Lo primero que debemos hacer es graficar la función f (x) =

1
2

exp

¡x¢
3

− sin (x)

para identificar las raices de la ecuación, para ello empleamos la instruccion fplot que
permite graficar funciones simbólicas. La sintaxis es:
fplot( ‘funcion’,[xmin xmax]) = grafica la funciónpara los valores de x en el intervalo
[xmin,xmax].
fplot( ‘funcion’,[xmin xmax ymin ymax]) = grafica la función para los valores de x
en el intervalo [xmin,xmax] y las imágenes comprendidas en el intervalo [ymin,ymax].
1

Ambas instrucciones permiten agregar color adicionando ’color’ antes de cerrar el paréntesis.

Para distinguir las raíces adicionamos la instrucción gird on que activauna

cuadrícula a la gráfica de la función.
Ejecutamos las siguientes instrucciones
fplot(‘0.5*exp(x/3)-sin(x)’,[-10 10 -1 1]), grid on)
fplot(‘0.5*exp(x/3)-sin(x)’,[0 2 -0.3 0.3]), grid on)
con la primera identificamos el intervalo donde se encuentran las raices positivas y con el
segundo obtenemos la figura:

Para aproximar las raices podemos emplear el método de Bisección en los intervalos[0.5, 1]
y [1.5, 2], clamamente la función es continua por ser la suma de funciones continuas
(exponencial y trigonometrica). También podemos emplear el método de Newton (puesto
que la función, la primera y la segunda derivada son continuas en todos los reales), pero
debemos tomar el valor inicial muy cerca de la raíz para no caer en una zona de divergencia
de la sucesión (es decir, que unaaproximación sea el valor donde la función alcanza el
mínimo).
Para empezar, apliquemos el método de bisección con una tolerancia de 10−6 (es decir,
2

queremos que cuando la distancia entre dos aproximaciones sea menor a 10−6 paremos),
para ello utilizamos la función "bisección" en MATLAB, que debe ser creada por el usuario
de la misma manera como se indicó en la inducción (Una muestrasencilla de un programa
típico se incluye al final del la guía). Digitando
biseccion(’0.5*exp(x/3)-sin(x)’,0.5,1,0.000001)
en la ventana Commad Window y oprimiento la tecla ENTER, obtenemos los siguientes
resultados

3

Y así mismo para la otra aproximación

Para emplear el método de Newton tomaremos la misma tolerancia para la distancia entre
las aproximaciones y emplearemos una funcióndel método de Newton en MATLAB, que
debe ser creada por el usuario (una muestra está al final la guía).
ventana Command Window:
newton(’0.5*exp(x/3)-sin(x)’,0,0.000001)

4

Si digitamos en la

obtenemos los siguientes resultados para la primer raíz

y para la segunda raíz

• Ejemplo: El factor de fricción f para los fluidos turbulentos en una tubería está dado
por
1
√ = 1.14 − 2log10
f

µ

9.35
e

+
D Re f



llamada correlación de Colebrook, donde Re es el número de Reynolds, e es la aspereza
de la superficie de la tubería y D es el diámetro de la tubería. Resolver la ecuación para
f utilizando el método de punto fijo para los siguientes casos:
1. (a) D = 0.1m, e = 0.0025m, Re = 3 × 104
(b) D = 0.1m, e = 0.0005m, Re = 5 × 106
Solución: Si queremos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Como resolver ecuaciones
  • Métodos Para Resolver Ecuaciones
  • Resolver Ecuaciones Diferenciales
  • Ecuaciones Y Problemas Para Resolver
  • Trabajo Ecuaciones Matlab
  • Ecuaciones Diferenciales Matlab
  • Solución de ecuaciones diferenciales en Matlab
  • ECUACIONES DIFERENCIALES EN MATLAB

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS