Tales de mileto
(Mileto, actual Turquía, 624 a.C.-?, 548 a.C.) Filósofo y matemático griego. En su juventud viajó a Egipto, donde aprendió geometría de los sacerdotes de Menfis,
En geometría, y en base a los conocimientos adquiridos en Egipto, elaboró un conjunto de teoremas generales y de razonamientos deductivos a partir de estos. Todo ello fue recopilado posteriormente por Euclides en suobra Elementos, pero se debe a Tales el mérito de haber introducido en Grecia el interés por los estudios geométricos.
Se atribuye a Tales el haber transportado desde Egipto a Grecia múltiples conocimientos y herramientas elementales de geometría. Aunque no es históricamente seguro, se acepta generalmente como su principal aporte el haber sostenido ya en su época lo que expresa un teorema que llevasu nombre, es decir, que un triángulo que tiene por lado el diámetro de la circunferencia que lo circunscribe es un triángulo rectángulo.
Asimismo es muy conocida la leyenda acerca de un método de comparación de sombras que Tales habría utilizado para medir la altura de las pirámides egipcias, aplicándolo luego a otros fines prácticos de la navegación. Se supone además que Tales conocía ya muchasde las bases de la geometría, como el hecho de que cualquier diámetro de un círculo lo dividiría en partes idénticas, que un triángulo isósceles tiene por fuerza dos ángulos iguales en su base o las propiedades relacionales entre los ángulos que se forman al cortar dos paralelas por una línea recta perpendicular.
El primero de ellos explica esencialmente una forma de construir un triángulosemejante a uno previamente existente (los triángulos semejantes son los que tienen iguales ángulos). Mientras que el segundo desentraña una propiedad esencial de los circuncentros de todos los triángulos rectángulos (encontrándose éstos en el punto medio de su hipotenusa), que a su vez en la construcción geométrica es ampliamente utilizado para imponer condiciones de construcción de ángulos rectos. Sitres o más rectas paralelas son intersecadas cada una por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales.
Primer teorema
Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema deTales recoge uno de los resultados más básicos de la geometría, a saber, que:
Si por un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes.
Segundo teorema
El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, las circunferencias y los ángulos inscritos, consiste en el siguienteenunciado:
Sea B un punto de la circunferencia de diámetro AC, distinto de A y de C. Entonces el ángulo ABC, es recto.
Apolonio de Pérgamo
(Apolonio de Perga o Perge; 262 a.C. - 180 a.C.) Matemático griego. Conocido con el sobrenombre el Gran Geómetra, sus extensos trabajos sobre geometría tratan de las secciones cónicas y de las curvas planas y la cuadratura de sus áreas. Acuñó los términoselipse, hipérbola y parábola, que responden a las respectivas propiedades matemáticas de estas tres funciones. También explicó el movimiento de los planetas según la teoría de los epiciclos.
Realizó numerosos viajes y residió también durante algún tiempo en Éfeso y en Pérgamo, a cuyo rey Atalo I (224-197) dedicó el cuarto libro de su tratado sobre las figuras cónicas. Apolonio hizo con respecto alas figuras cónicas lo que Euclides había hecho un siglo antes en cuanto al círculo, y fue él quien dio a las secciones del cono las denominaciones todavía en uso: parábola, hipérbola, elipse. Aunque sólo cuatro de los ocho libros de que estaba compuesto hayan llegado a nosotros en la lengua original (poseemos otros tres en idioma árabe), el tratado es tan completo que habían de pasar siglos antes...
Regístrate para leer el documento completo.