tecnologia
En el siglo XIX, Joule ideó un experimento para demostrar que el calor no era más que una forma de energía, y que sepodía obtener a partir de la energía mecánica. Dicho experimento se conoce como experimento de Joule para determinar elequivalente mecánico del calor.
Antes del experimento de Joule se pensaba que calor y energía eran dos magnitudes diferentes, por lo que las unidades en que se medían ambas eran también distintas. La unidad de calor que se empleaba era la caloría.
Una caloría es la cantidad decalor necesaria para elevar la temperatura de un gramo de agua destilada desde 14.5ºC a 15.5ºC..
Con su experimento, Joule se propuso demostrar que se podía elevar la temperatura del agua transfiriéndole energía mecánica. El aparato que empleó se muestra en la siguiente figura. En el interior de un recipiente se introduce 1 kg de agua a 14.5 ºC.
Al recipiente se le acoplan unas paletasconectadas mediante una cuerda con una masa que puede caer. Conforme la masa cae a velocidad constante, las paletas giran, por lo que se convierte la energía potencial gravitatoria de la masa en energía para hacer girar las paletas. Debido a este giro, el agua aumenta de temperatura (el giro de las paletas se transforma en calor).
Lo que encontró Joule fue que, para elevar la temperatura delkilogramo de agua hasta 15.5ºC (es decir, para conseguir una energía de 1000 calorías), la energía potencial de la masa debía disminuir en 4180 Julios. Por tanto, la equivalencia entre unidades de calor y energía es:
El descubrimiento de Joule llevó a la teoría de la conservación de la energía lo que a su vez condujo al desarrollo del primer principio de la Termodinámica.
Energía Interna
Laenergía interna se define como la energía asociada con el movimiento aleatorio y desordenado de las moléculas. Está en una escala separada de la energía macroscópica ordenada, que se asocia con los objetos en movimiento. Se refiere a la energía microscópica invisible de la escala atómica y molecular. Por ejemplo, un vaso de agua a temperatura ambiente sobre una mesa, no tiene energía aparente, yasea potencial o cinética. Pero en escala microscópica, es un hervidero de moléculas de alta velocidad que viajan a cientos de metros por segundo. Si el agua se tirase por la habitación, esta energía microscópica no sería cambiada necesariamente por la superimposición de un movimiento ordenada a gran escala, sobre el agua como un todo.
Primera Ley de la Termodinámica
La primera ley de la termodinámica,es la aplicación del principio deconservación de la energía, a los procesos de calor y termodinámico:
La primera ley hace uso de los conceptos claves de energía interna, calor, ytrabajo sobre un sistema. Usa extensamente el estudio de los motores térmicos. La unidad estándar de todas estas cantidades es el julio, aunque algunas veces se expresan en calorías o BTU.
En los textos de Químicaes típico escribir la primera ley como ΔU=Q+W. Por supuesto que es la misma ley, -la expresión termodinámica del principio de conservación de la energía-. Exactamente se define W, como el trabajo realizado sobre el sistema, en vez de trabajo realizado por el sistema. En un contexto físico, el escenario común es el de añadir calor a un volumen de gas, y usar la expansión de ese gas para realizartrabajo, como en el caso del empuje de un pistón, en un motor de combustión interna. En el contexto de procesos y reacciones químicas, suelen ser mas comunes, encontrarse con situaciones donde el trabajo se realiza sobre el sistema, mas que el realizado por el sistema.
Resulta deseable construir un refrigerador que pueda realizar su proceso con el mínimo de trabajo. Si se pudiera construir uno...
Regístrate para leer el documento completo.