transistores
transistor bipolar como amplificadorEl comportamiento del transistor se puede ver como dos diodos (Modelo de Ebers-Moll), uno entre base y emisor, polarizado endirecto y otro diodo entre base y colector, polarizado en inverso. Esto quiere decir que entre base y emisor tendremos una tensión igual a la tensión directa de un diodo, es decir 0,6 a 0,8 V para untransistor de silicio y unos 0,4 para el germanio.
Pero la gracia del dispositivo es que en el colector tendremos una corriente proporcional a la corriente de base: IC = β IB, es decir, ganancia decorriente cuando β>1. Para transistores normales de señal, β varía entre 100 y 300.
Entonces, existen tres configuraciones para el amplificador:
Emisor común
La señal se aplica a la base deltransistor y se extrae por el colector. El emisor se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganancia tanto de tensión como de corriente yalta impedancia de entrada. En caso de tener resistencia de emisor, RE > 50 Ω, y para frecuencias bajas, la ganancia en tensión se aproxima bastante bien por la siguiente expresión: G_V = -\frac{R_C}{R_E} ; y la impedancia de salida, por RC
Como la base está conectada al emisor por un diodo en directo, entre ellos podemos suponer una tensión constante, Vg. También supondremos que β es constante.Entonces tenemos que la tensión de emisor es: VE = VB − Vg
Y la corriente de emisor: I_E = \frac {V_E}{R_E} = \frac {V_B - V_g}{R_E}.
La corriente de emisor es igual a la de colector más la debase: I_E = I_C + I_B = I_B (\beta + 1) = I_C (1 + \frac {1}{\beta}). Despejando I_C = \frac {I_E}{1 + \frac {1}{\beta}}
La tensión de salida, que es la de colector se calcula como: V_C = Vcc - I_C R_C= Vcc - R_C \frac {I_E}{1 + \frac {1}{\beta}}
Como β >> 1, se puede aproximar: 1 + \frac {1}{\beta} = 1 y, entonces, V_C = Vcc - R_C I_E = Vcc - R_C \frac {V_B - V_g}{R_E}
Que podemos escribir...
Regístrate para leer el documento completo.