TRIGONOMETRÍA CONTENIDO TRIGONOMETRÍA Tema. Pág. Conceptos y definiciones. 3 Ángulos. Grados. Arcos. Radianes 4 Polígonos y circunferencia. 5 Sistemas coordenados. Rectangulares. Polares. 6 Triángulos. Definición. Clasificación. 7 Círculo trigonométrico (unitario) 12 Funciones trigonométricas. 10 Valores exactos de funciones trigonométricas para ángulos de 30°, 45° y 60° 13 Identidadesfundamentales, recíprocas, cocientes, pitagóricas 15 Triángulos rectángulos. Casos y soluciones 16 Triángulos acutángulos y oblicuángulos 18 Ley de senos 18 Ley de cósenos 19 Casos y solución. “L L L”, “A L A”, “L A L” 20 Aplicaciones. Área del triángulo 21 Ángulos adyacentes. Funciones seno, coseno, tangente y cotangente. 22 Función seno, suma de dos ángulos 22 Función coseno, suma de dos ángulos 22Función tangente, suma de dos ángulos 23 Función cotangente suma de dos ángulos 23 Ejemplo de aplicación 23 Función seno diferencia de dos ángulos 24 Función coseno diferencia de dos ángulos 24 Función tangente diferencia de dos ángulos 24 Función cotangente diferencia de dos ángulos 24 Ejemplo de aplicación 24 Función seno de ángulo doble 25 Función coseno de ángulo doble 25 Función tangente de ángulodoble 25 Función cotangente de ángulo doble 25 Ejemplo de aplicación 25 Función seno en función del semiángulo 26 Función coseno en función del semiángulo 26 Función tangente en función del semiángulo 26 Ejemplo de aplicación 27 Función seno de un semiángulo, a partir del coseno del doble del ángulo 28 Función coseno de un semiángulo, a partir del ángulo coseno del doble del ángulo. 28 Funcióntangente de un semiángulo, a partir del ángulo coseno del doble del ángulo 28 Función tangente de un semiángulo, a partir del ángulo coseno del doble del ángulo 27 Ejemplo de aplicación 28 Transformación de suma de senos de ángulos, en productos. 29 Transformación de diferencia senos de ángulos, en productos. 29 Transformación de suma de cosenos de ángulos, en productos. 29 Transformación dediferencia de cosenos de ángulos, en productos. 30 Transformación de suma de tangentes de ángulos, en productos. 30 Transformación de diferencia de tangentes de ángulos, en productos. Ejemplo de aplicación 30 Ecuaciones trigonométricas 31 Tabla de fórmulas de trigonometría 34 Tablas de logaritmos 37 Vínculos con archivos relacionados. 46 Índice 46 Última modificación: 20/05/03 11:05 AM Autor: ING. P.RAMOS V. -2CONTENIDO
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
ÍNDICE
TRIGONOMETRÍA Última apertura controlada: 11/05/03 11:16 AM Sin control 22/07/10 10:17 a.m.
Autor: ING. P. RAMOS V. ÍNDICE
-3-
CONTENIDO
TRIGONOMETRÍA
CONCEPTOS Y DEFINICIONES. Ángulo agudo. Es el menor queel recto, y que sus límites son de 0° a 90°; o de 0 a ½ radián. Es mayor que un llano, pero menor que 360°. Ángulo cóncavo. Es menor que el llano, pero mayor que 0°. Ángulo convexo. Ángulo de revolución Es el generado al girar una recta sobre un punto, y dar más de una vuelta. Mide (Perígono). más de 360° o 2 radianes. Es el formado por un solo lado, se dice también que sus lados soncolineales; y Ángulo llano. que mide 180° o radianes. Ángulo obtuso. Es mayor que el recto, y que sus límites son de 90° a 180°, o de ½ a radián. Ángulo recto. Es el formado por los lados perpendiculares, y que mide 90° o ½ radián. Es el espacio comprendido entre dos rectas que se cortan, o el generado al girar Ángulo. sobre uno de sus extremos. El punto sobre el que gira, o aquel en el que secortan se llama vértice. Y las rectas que lo limitan lados. Son los que tienen un lado común. Ángulos adyacentes. Son los adyacentes o al sumarse, equivalen a un recto o 90°. Ángulos complementarios. Ángulos opuestos por Son los que tienen el vértice común, sus lados son unos la prolongación de los otros, por lo que también son adyacentes, y equivalen a uno de revolución o 360°. el vértice. Son los...
Leer documento completo
Regístrate para leer el documento completo.