Autores griegos

Solo disponible en BuenasTareas
  • Páginas : 20 (4926 palabras )
  • Descarga(s) : 0
  • Publicado : 4 de septiembre de 2012
Leer documento completo
Vista previa del texto
EUCLIDES
Euclides (en griego Ευκλείδης, Eukleides) fue un matemático griego, que vivió alrededor del año 300 a.C, ~(325 adC) - (265 adC).
Su vida es poco conocida, salvo que vivió en Alejandría, Egipto. Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450 d. C., es la principal fuente. Existen algunos otros datos[->0] poco fiables. Algunos autores árabes afirman queEuclides era hijo de Naucrates y se barajan tres hipótesis[->1]:
Euclides fue un personaje histórico que escribió Los Elementos y otras obras atribuidas a él.
Euclides fue el líder[->2] de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso escribiendo libros[->3] a nombre de Euclides después de su muerte[->4].
Lasobras completas de Euclides fueron escritas por un equipo de matemáticos de Alejandría quienes tomaron el nombre Euclides del personaje histórico Euclides de Megara que había vivido unos cien años antes.
Su obra Los elementos, es una de las obras científicas más conocidas del mundo, y era una recopilación del conocimiento impartido en el centro académico. En ella se presenta de manera formal,partiendo únicamente de cinco postulados, el estudio de las propiedades de líneas y planos, círculos y esferas, triángulos[->5] y conos, etc.; es decir, de las formas regulares. Probablemente ninguno de los resultados de "Los elementos" haya sido demostrado por primera vez por Euclides pero la organización[->6] del material y su exposición[->7], sin duda alguna se deben a él. De hecho hay muchaevidencia de que Euclides usó libros de texto[->8] anteriores cuando escribía los elementos ya que presenta un gran número de definiciones que no son usadas, tales como la de un oblongo, un rombo y un romboide. Los teoremas de Euclides son los que generalmente se aprenden en la escuela[->9] moderna. Por citar algunos de los más conocidos:
· La suma de los ángulos interiores de cualquier triángulo es180°.
· En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, que es el famoso teorema de Pitágoras.
La geometría de Euclides, además de ser un poderoso instrumento de razonamiento deductivo, ha sido extremadamente útil en muchos campos del conocimiento; por ejemplo, en la física, la astronomía, la química[->10] y diversas ingenierías. Desdeluego, es muy útil en las matemáticas[->11]. Inspirados por la armonía de la presentación de Euclides, en el siglo II se formuló la teoría[->12] ptolemeica del Universo[->13], según la cual la Tierra es el centro del Universo, y los planetas[->14], la Luna y el Sol[->15] dan vueltas a su alrededor en líneas perfectas, o sea círculos y combinaciones de círculos. Sin embargo, las ideas de Euclidesconstituyen una considerable abstracción de la realidad. Por ejemplo, supone que un punto no tiene tamaño; que una línea es un conjunto de puntos que no tienen ni ancho ni grueso, solamente longitud; que una superficie no tiene grosor, etcétera. En vista de que el punto, de acuerdo con Euclides, no tiene tamaño, se le asigna una dimensión nula o de cero. Una línea tiene solamente longitud, por loque adquiere una dimensión igual a uno. Una superficie no tiene espesor, no tiene altura, por lo que tiene dimensión dos: ancho y largo. Finalmente, un cuerpo sólido, como un cubo, tiene dimensión tres: largo, ancho y alto. Euclides intentó resumir todo el saber matemático en su libro[->16] Los elementos. La geometría de Euclides fue una obra que perduró sin variaciones hasta el siglo XIX.
De losaxiomas de partida, solamente el de las paralelas parecía menos evidente. Diversos autores intentaron sin éxito[->17] prescindir de dicho axioma intentándolo colegir del resto de axiomas. Ver Geometría euclidiana.
Finalmente, algunos autores crearon nuevos basándose en invalidar o sustituir el axioma de las paralelas, dando origen a las "geometrías no euclidianas". Dichas geometrías tienen...
tracking img