Calculo integral

Solo disponible en BuenasTareas
  • Páginas : 5 (1004 palabras )
  • Descarga(s) : 7
  • Publicado : 19 de mayo de 2010
Leer documento completo
Vista previa del texto
En 1686 publica en la misma revista un trabajo sobre Cálculo integral donde aparece impreso por primera vez el símbolo. Al año siguiente aparece Principios de Newton, aunque habla sido escrito en 1671 (ver biografía de Newton). Esta demora en aparecer la obra de Newton generó la polémica con Leibniz. En esta obra muestra también como con el signo integral pueden expresarse mediante expresionesalgebraicas curvas que no lo son, como la cicloide. EL vocablo trascendente, para las ecuaciones en Las que la incógnita figura en el exponente, también se debe a Leibniz

Las matemáticas entraron en el siglo XIX, en donde se postularon los fundamentos de las matemáticas modernas.
Avances en la resolución de ecuaciones y en lo que hoy se conoce como calculo, hicieron de esta época la de mayorriqueza para esta ciencia
A nivel de los métodos integrales, la mayor fama la adquirió la geometría de los indivisibles, creada por Cavalieri, pensado como un método universal de la geometría. Este método fue creado para la determinación de las medidas de las figuras planas y cuerpos, los cuales se representaban como elementos compuestos de elementos de dimensión menor. Así, las figuras constan desegmentos de rectas paralelas y los cuerpos de planos paralelos. Sin embargo, este método era incapaz de medir longitudes de curvas, ya que los correspondientes indivisibles (los puntos) eran adimensionales. Pese a ello, la integración definida en forma de cuadraturas geométricas, adquirió fama en la primera mitad del siglo XVII, debido a la gran cantidad de problemas que podían resolver

Fueusado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos. uno de los mayores cientificos fue khriz chackon quien dio la formula completa

Historia [editar]
Integración antes delcálculo [editar]
La integración se puede trazar en el pasado hasta el antiguo Egipto, circa 1800 a. C., con el papiro de Moscú, donde se demuestra que ya se conocía una fórmula para calcular el volumen de un tronco piramidal. La primera técnica sistemática documentada capaz de determinar integrales es el método de exhausción de Eudoxo (circa 370 a. C.), que trataba de encontrar áreas y volúmenes abase de partirlos en un número infinito de formas para las cuales se conocieran el área o el volumen. Este método fue desarrollado y usado más adelante por Arquímedes, que lo empleó para calcular áreas de parábolas y una aproximación al área del círculo. Métodos similares fueron desarrollados de forma independiente en China alrededor del siglo III por Liu Hui, que los usó para encontrar el área delcírculo. Más tarde, Zu Chongzhi usó este método para encontrar el volumen de una esfera. En el Siddhanta Shiromani, un libro de astronomía del siglo XII del matemático indio Bhaskara II, se encuentran algunas ideas de cálculo integral.
Hasta el siglo XVI no empezaron a aparecer adelantos significativos sobre el método de exhausción. En esta época, por un lado, con el trabajo de Cavalieri con sumétodo de los indivisibles y, por otro lado, con los trabajos de Fermat, se empezó a desarrollar los fundamentos del cálculo moderno. A comienzos del siglo XVII, se produjeron nuevos adelantos con las aportaciones de Barrow y Torricelli, que presentaron los primeros indicios de una conexión entre la integración y la derivación.
Newton y Leibniz [editar]
Los principales adelantos en integraciónvinieron en el siglo XVII con el descubrimiento del teorema fundamental del cálculo, realizado de manera independiente por Newton y Leibniz. El teorema demuestra una conexión entre la integración y la derivación. Esta conexión, combinada con la facilidad, comparativamente hablando, del cálculo de derivadas, se puede usar para calcular integrales. En particular, el teorema fundamental del cálculo...
tracking img