Electrolitos

Solo disponible en BuenasTareas
  • Páginas : 44 (10845 palabras )
  • Descarga(s) : 0
  • Publicado : 18 de febrero de 2010
Leer documento completo
Vista previa del texto
Cap. I - Pág. 1

CAPÍTULO I INTRODUCCIÓN A LOS MÉTODOS INFORMÁTICOS APLICADOS AL MODELADO EN INGENIERÍA
Por Nicolás José Scenna
I.1 INTRODUCCIÓN Es sabido que el procedimiento metodológico fundamental para resolver un problema en ingeniería consiste en representarlo de una manera adecuada, de tal forma de lograr una sustitución del sistema real (equipo, proceso, etc.) por uno más adecuadopara el tratamiento formal. Por lo general, las herramientas lógicomatemáticas nos brindan un marco útil para representar mediante un sistema de símbolos y reglas, el comportamiento de los sistemas reales. Bajo el método científico, por ejemplo, se consolidan leyes y teorías en diversas ramas del conocimiento, las cuales son expresables por medio de sistemas de ecuaciones diferenciales. En otraspalabras, se logra construir un nuevo sistema, del cual conocemos sus reglas de juego y símbolos, como un resultado de un proceso de abstracción de la realidad. Obviamente, dado la infinita complejidad de los fenómenos fisicoquímicos, estas construcciones abstractas, conocidas genéricamente como modelos, son sólo meras aproximaciones de la realidad. En efecto, no es otra cosa lo que se realiza cuandoen física utilizamos ecuaciones para describir el movimiento de una partícula, o resolvemos los balances correspondientes aplicando las leyes de conservación de la materia, energía o cantidad de movimiento; o bien cuando nos enfrentamos al diseño de un equipo según los procedimientos que conocemos a partir del campo de las operaciones unitarias. De aquí se desprende que si bien el sistema real aestudiar es único, puede existir un número muy grande de modelos asociados al mismo. En efecto, para obtener un modelo que pueda resolverse (es decir que sea útil), resulta necesario adoptar un conjunto de hipótesis. Por ejemplo, si consideramos la fricción, si es importante o no contemplar el intercambio de energía por radiación, si existen y se consideran los efectos electromagnéticos, etc. Lasnecesidades de exactitud que el problema a resolver nos impone, determinan el conjunto de hipótesis a utilizar. Por ejemplo, el error de una milésima de grado en el cálculo de un ángulo puede no tener implicancias en el punto de impacto de un proyectil que recorre una distancia pequeña, pero no puede afirmarse lo mismo para una trayectoria intergaláctica. En Modelado, Simulación y Optimización deProcesos Químicos Autor: Nicolás J. Scenna y col. ISBN: 950-42-0022-2 - ©1999

Cap. I - Pág. 2 síntesis, dado el sistema real y los objetivos tecnológicos perseguidos, existirá un conjunto de hipótesis adecuadas que determinarán las características del modelo, o sistema de ecuaciones a resolver. Lo expresado recientemente implica una relación entre modelo (conjunto de hipótesis asumidas) yobjetivos del ingeniero. Resulta evidente que no todo sistema de ecuaciones puede resolverse fácilmente, al menos desde el punto de vista analítico. Esto impuso a lo largo de la historia limitaciones importantes al tipo de modelos que podían resolverse, o de otra forma, la necesidad de recurrir a hipótesis inadecuadas o restrictivas (supersimplificaciones) para al menos poder tratar el problema. Es porello también que en los orígenes de las ciencias tecnológicas los modelos podían ser considerados en gran medida como empíricos, esto es, con parámetros incorporados que surgían de experiencias, y no a partir de los primeros principios o leyes fundamentales. No debe extrañar que aún hoy, pese a todos nuestros avances, exista la necesidad de utilizar permanentemente parámetros en nuestros modelos,que no son otra cosa que la medida de nuestra ignorancia, y por lo tanto, implican la necesidad de reemplazar las leyes básicas por aproximaciones causales obtenidas de datos experimentales. Este es el caso por ejemplo de la estimación de las propiedades de equilibrio de mezclas de comportamiento altamente no ideal. A medida que evolucionaron las diversas ramas de las matemáticas y con el...
tracking img